Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Microbiol ; 10(3): 729-40, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18042255

RESUMEN

The human pathogen Pseudomonas aeruginosa has been shown previously to use similar virulence factors when infecting mammalian hosts or Dictyostelium amoebae. Here we randomly mutagenized a clinical isolate of P. aeruginosa, and identified mutants with attenuated virulence towards Dictyostelium. These mutant strains also exhibited a strong decrease in virulence when infecting Drosophila and mice, confirming that P. aeruginosa makes use of similar virulence traits to confront these very different hosts. Further characterization of these bacterial mutants showed that TrpD is important for the induction of the quorum-sensing circuit, while PchH and PchI are involved in the induction of the type III secretion system. These results demonstrate the usefulness and the relevance of the Dictyostelium host model to identify and analyse new virulence genes in P. aeruginosa.


Asunto(s)
Dictyostelium/microbiología , Pseudomonas aeruginosa/patogenicidad , Factores de Virulencia/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Elementos Transponibles de ADN , Drosophila , Femenino , Humanos , Masculino , Ratones , Mutagénesis Insercional , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Análisis de Supervivencia , Virulencia/genética
2.
Cell Host Microbe ; 6(4): 309-20, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19837371

RESUMEN

Ubiquitin proteases remove ubiquitin monomers or polymers to modify the stability or activity of proteins and thereby serve as key regulators of signal transduction. Here, we describe the function of the Drosophila ubiquitin-specific protease 36 (dUSP36) in negative regulation of the immune deficiency (IMD) pathway controlled by the IMD protein. Overexpression of catalytically active dUSP36 ubiquitin protease suppresses fly immunity against Gram-negative pathogens. Conversely, silencing dUsp36 provokes IMD-dependent constitutive activation of IMD-downstream Jun kinase and NF-kappaB signaling pathways but not of the Toll pathway. This deregulation is lost in axenic flies, indicating that dUSP36 prevents constitutive immune signal activation by commensal bacteria. dUSP36 interacts with IMD and prevents K63-polyubiquitinated IMD accumulation while promoting IMD degradation in vivo. Blocking the proteasome in dUsp36-expressing S2 cells increases K48-polyubiquitinated IMD and prevents its degradation. Our findings identify dUSP36 as a repressor whose IMD deubiquitination activity prevents nonspecific activation of innate immune signaling.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/inmunología , Endopeptidasas/fisiología , Regulación de la Expresión Génica , Transducción de Señal , Animales , Dosificación de Gen , Silenciador del Gen , Vida Libre de Gérmenes/inmunología , Bacterias Gramnegativas/inmunología , Proteínas Quinasas JNK Activadas por Mitógenos/biosíntesis , FN-kappa B/biosíntesis , Mapeo de Interacción de Proteínas
3.
J Cell Sci ; 121(Pt 20): 3325-34, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18796536

RESUMEN

Nonaspanins are characterised by a large N-terminal extracellular domain and nine putative transmembrane domains. This evolutionarily conserved family comprises three members in Dictyostelium discoideum (Phg1A, Phg1B and Phg1C) and Drosophila melanogaster, and four in mammals (TM9SF1-TM9SF4), the function of which is essentially unknown. Genetic studies in Dictyostelium demonstrated that Phg1A is required for cell adhesion and phagocytosis. We created Phg1A/TM9SF4-null mutant flies and showed that they were sensitive to pathogenic Gram-negative, but not Gram-positive, bacteria. This increased sensitivity was not due to impaired Toll or Imd signalling, but rather to a defective cellular immune response. TM9SF4-null larval macrophages phagocytosed Gram-negative E. coli inefficiently, although Gram-positive S. aureus were phagocytosed normally. Mutant larvae also had a decreased wasp egg encapsulation rate, a process requiring haemocyte-dependent adhesion to parasitoids. Defective cellular immunity was coupled to morphological and adhesion defects in mutant larval haemocytes, which had an abnormal actin cytoskeleton. TM9SF4, and its closest paralogue TM9SF2, were both required for bacterial internalisation in S2 cells, where they displayed partial redundancy. Our study highlights the contribution of phagocytes to host defence in an organism possessing a complex innate immune response and suggests an evolutionarily conserved function of TM9SF4 in eukaryotic phagocytes.


Asunto(s)
Escherichia coli/inmunología , Hemocitos/inmunología , Inmunidad Innata/fisiología , Proteínas de la Membrana/inmunología , Fagocitosis/inmunología , Transducción de Señal/inmunología , Staphylococcus aureus/inmunología , Animales , Adhesión Celular/genética , Adhesión Celular/inmunología , Línea Celular , Dictyostelium/genética , Dictyostelium/inmunología , Drosophila melanogaster , Hemocitos/citología , Larva/genética , Larva/inmunología , Larva/microbiología , Mamíferos/genética , Mamíferos/inmunología , Proteínas de la Membrana/genética , Mutación/genética , Mutación/inmunología , Fagocitos/citología , Fagocitos/inmunología , Fagocitosis/genética , Transducción de Señal/genética
4.
Genes Cells ; 12(10): 1193-204, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17903178

RESUMEN

Pathogen recognition and engulfment by phagocytic cells of the blood cell lineage constitute the first line of defense against invading pathogens. This cellular immune response is conserved throughout evolution and depends strictly on cytoskeletal changes regulated by the RhoGTPases family. Many pathogens have developed toxins modifying RhoGTPases activity to their own benefit. In particular, the Exoenzyme S (ExoS) toxin of the Gram-negative bacteria Pseudomonas aeruginosa is directly injected into the host cell cytoplasm and contains a GAP domain (ExoSGAP) targeting RhoGTPases. Searching for the contribution of each RhoGTPases, Rho1, Rac1, Rac2, Mtl (Mig2-like) and Cdc42 to fly resistance to P. aeruginosa infections, we found that Rac2 is required to resist to P. aeruginosa and to other Gram-negative or Gram-positive bacteria. The Rac2 immune-deficient phenotype is attributable to defective engulfment of pathogens since Rac2-mutant macrophages exhibited strong reduction in the phagocytosis level of both Gram-negative and Gram-positive bacterial particles whereas systemic immune signaling pathways, including Toll, Immune deficiency and Jun kinases, were not affected. Co-expression of Rac2 and ExoSGAP rescued the increased sensitivity to P. aeruginosa observed in ExoSGAP-expressing flies suggesting that Rac2 is the main host factor whose function is inhibited by the GAP domain of the ExoS toxin.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Toxinas Bacterianas/metabolismo , Drosophila melanogaster/microbiología , Pseudomonas aeruginosa/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/química , Drosophila melanogaster/metabolismo , Bacterias Gramnegativas/metabolismo , Macrófagos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Modelos Biológicos , Fagocitosis , Células Plasmáticas/metabolismo , Células Plasmáticas/microbiología , Sepsis , Proteína de Unión al GTP cdc42/metabolismo , Proteína RCA2 de Unión a GTP
5.
Cell Microbiol ; 8(1): 139-48, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16367873

RESUMEN

The amoeba Dictyostelium discoideum shares many traits with mammalian macrophages, in particular the ability to phagocytose and kill bacteria. In response, pathogenic bacteria use conserved mechanisms to fight amoebae and mammalian phagocytes. Here we developed an assay using Dictyostelium to monitor phagocyte-bacteria interactions. Genetic analysis revealed that the virulence of Klebsiella pneumoniae measured by this test is very similar to that observed in a mouse pneumonia model. Using this assay, two new host resistance genes (PHG1 and KIL1) were identified and shown to be involved in intracellular killing of K. pneumoniae by phagocytes. Phg1 is a member of the 9TM family of proteins, and Kil1 is a sulphotransferase. The loss of PHG1 resulted in Dictyostelium susceptibility to a small subset of bacterial species including K. pneumoniae. Remarkably, Drosophila mutants deficient for PHG1 also exhibited a specific susceptibility to K. pneumoniae infections. Systematic analysis of several additional Dictyostelium mutants created a two-dimensional virulence array, where the complex interactions between host and bacteria are visualized.


Asunto(s)
Dictyostelium/fisiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/fisiología , Proteínas de la Membrana/fisiología , Fagocitosis , Animales , Células Cultivadas , Dictyostelium/crecimiento & desarrollo , Dictyostelium/microbiología , Modelos Animales de Enfermedad , Drosophila/crecimiento & desarrollo , Drosophila/microbiología , Drosophila/fisiología , Klebsiella pneumoniae/patogenicidad , Proteínas de la Membrana/genética , Ratones , Mutación , Neumonía Bacteriana/metabolismo , Neumonía Bacteriana/microbiología , Virulencia
6.
Cell Microbiol ; 7(6): 799-810, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15888083

RESUMEN

We show here that transgenic Drosophila can be used to decipher the effect of a bacterial toxin on innate immunity and demonstrate the contribution of blood cells in fly resistance to bacterial infection. ExoS is a Pseudomonas aeruginosa exotoxin directly translocated into the host cell cytoplasm through the type III secretion system found in many Gram-negative bacteria. It contains a N-terminal GTPase activating (GAP) domain that prevents cytoskeleton reorganization by Rho family of GTPases in cell culture. Directed expression of the ExoS GAP domain (ExoSGAP) during fly eye morphogenesis inhibited Rac1-, Cdc42- and Rho-dependent signalling, demonstrating for the first time its activity on RhoGTPases in a whole organism. We further showed that fly resistance to P. aeruginosa infections was altered when ExoSGAP was expressed either ubiquitously or in haemocytes, but not when expressed into the fat body, the major source of NF-(kappa)B-dependent anti-microbial peptide synthesis. Fly sensitivity to infection was also observed with Gram-positive Staphylococcus aureus strain and was associated to a reduced phagocytosis capacity of ExoSGAP-expressing haemocytes. Our results highlight the major contribution of cellular immunity during the first hours after Drosophila infection by P. aeruginosa, an opportunist pathogen affecting patients with pathologies associated to a reduced leukocyte number.


Asunto(s)
ADP Ribosa Transferasas/biosíntesis , Toxinas Bacterianas/biosíntesis , Drosophila melanogaster/inmunología , Drosophila melanogaster/metabolismo , Pseudomonas aeruginosa/genética , ADP Ribosa Transferasas/genética , Animales , Animales Modificados Genéticamente , Toxinas Bacterianas/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/microbiología , Ojo/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Proteínas Activadoras de GTPasa/genética , Hemocitos/metabolismo , Microscopía Electrónica de Rastreo , Morfogénesis , Fagocitosis , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/fisiología , Transducción de Señal , Staphylococcus aureus/patogenicidad , Virulencia , Proteínas de Unión al GTP rho/metabolismo
7.
J Cell Sci ; 117(Pt 13): 2777-89, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15169836

RESUMEN

In Drosophila, RotundRacGAP/RacGAP(84C) is critical to retinal organisation and spermatogenesis. We show that eye-directed expression of RacGAP(84C) or its GTPase activating protein (GAP) domain induces a dominant rough eye phenotype which we used as a starting point in a gain-of-function screen to identify new partners of RacGAP(84C). Proteins known to function in Ras, Rho and Rac signalling were identified confirming the essential role of RacGAP(84C) in crosstalk between GTPases. Other potential RacGAP(84C) partners identified by the screen are implicated in signal transduction, DNA remodelling, cytoskeletal organisation, membrane trafficking and spermatogenesis. This latter class includes the serine/threonine kinase Center divider (Cdi), which is homologous to the human LIM kinase, Testis specific kinase 1 (TESK1), involved in cytoskeleton control through Cofilin phosphorylation. Eye-directed expression of cdi strongly suppressed the phenotypes induced by either RacGAP(84C) gain-of-function or by the dominant negative form of Rac1, Rac1N17. These results are consistent with Cdi being a specific downstream target of Rac1. We showed that Rac1 and cdi are both expressed in Drosophila testis and that homozygous Rac1 mutants exhibit poor fertility that is further reduced by introducing a cdi loss-of-function mutation in trans. Thus, results from a misexpression screen in the eye led us to a putative novel Rac1-Cdi-Cofilin pathway, regulated by RacGAP(84C), coordinating Drosophila spermatogenesis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Ojo/enzimología , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Espermatogénesis , Proteína de Unión al GTP rac1/metabolismo , Factores Despolimerizantes de la Actina , Animales , Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Ojo/ultraestructura , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Regulación del Desarrollo de la Expresión Génica , Genes Dominantes , Genes de Insecto , Homocigoto , Infertilidad Masculina/genética , Masculino , Proteínas de Microfilamentos , Mutagénesis Insercional , Especificidad de Órganos/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Testículo/metabolismo , Proteína de Unión al GTP rac1/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda