Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(25): e2202295119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696574

RESUMEN

Caveolae are small plasma membrane invaginations, important for control of membrane tension, signaling cascades, and lipid sorting. The caveola coat protein Cavin1 is essential for shaping such high curvature membrane structures. Yet, a mechanistic understanding of how Cavin1 assembles at the membrane interface is lacking. Here, we used model membranes combined with biophysical dissection and computational modeling to show that Cavin1 inserts into membranes. We establish that initial phosphatidylinositol (4, 5) bisphosphate [PI(4,5)P2]-dependent membrane adsorption of the trimeric helical region 1 (HR1) of Cavin1 mediates the subsequent partial separation and membrane insertion of the individual helices. Insertion kinetics of HR1 is further enhanced by the presence of flanking negatively charged disordered regions, which was found important for the coassembly of Cavin1 with Caveolin1 in living cells. We propose that this intricate mechanism potentiates membrane curvature generation and facilitates dynamic rounds of assembly and disassembly of Cavin1 at the membrane.


Asunto(s)
Caveolas , Proteínas de Unión al ARN , Caveolas/química , Caveolina 1/química , Células HEK293 , Humanos , Fosfatidilinositol 4,5-Difosfato/química , Dominios Proteicos , Transporte de Proteínas , Proteínas de Unión al ARN/química , Transducción de Señal
2.
Mol Pharm ; 21(10): 5261-5271, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39267585

RESUMEN

Aqueous solubility is one of the most important physicochemical properties of drug molecules and a major driving force for oral drug absorption. To date, the performance of in silico models for the estimation of solubility for novel chemical space is limited. To investigate possible reasons and remedies for this, the Johnson and Johnson in-house aqueous solubility data with over 40,000 compounds was leveraged. All data were generated through the same high-throughput assay, providing a unique opportunity to explore the relationship between data quality, quantity, and model estimations. Six intrinsic solubility data sets with different sizes and noise levels were generated by making use of three different approaches: (i) inclusion or exclusion of amorphous solid residue, (ii) measured or experimental log D to identify the intrinsic solubility, and (iii) adopting or omitting a quality check process in the data processing workflow. A random forest regressor was trained on the data sets with three different sets of descriptors calculated from RDKit, ADMET predictor, or Mordred, and the performances were evaluated with nested cross-validation as well as ten refined test sets. The models confirm, as expected, that with the same data set size, high-quality data leads to better model performance; however, also, models trained with larger data sets containing analytical variability can give equally accurate estimations compared to models trained with small, clean, and diverse data sets. However, noise introduced by including the presence of amorphous solid postsolubility measurement in the training data set cannot be overcome by increasing data size, as they are introducing a biased systematic positive error in the data set, confirming the importance of critical data review. Finally, two top-performing models were tested on the first test set from the second solubility challenge, achieving RMSE values of 0.74 and 0.72 and log S ± 0.5 of 46 and 48%, respectively. These results demonstrated improved performance compared to those reported in the findings of the competition, highlighting that a single-source curated data set can enhance the prediction of intrinsic solubility.


Asunto(s)
Solubilidad , Exactitud de los Datos , Simulación por Computador , Preparaciones Farmacéuticas/química
3.
Mol Pharm ; 21(1): 313-324, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38054599

RESUMEN

Transient permeation enhancers (PEs) have been widely used to improve the oral absorption of macromolecules. During pharmaceutical development, the correct selection of the macromolecule, PE, and the combination needs to be made to maximize oral bioavailability and ensure successful clinical development. Various in vitro and in vivo methods have been investigated to optimize this selection. In vitro methods are generally preferred by the pharmaceutical industry to reduce the use of animals according to the "replacement, reduction, and refinement" principle commonly termed "3Rs," and in vitro methods typically have a higher throughput. This paper compares two in vitro methods that are commonly used within the pharmaceutical industry, being Caco-2 and an Ussing chamber, to two in vivo models, being in situ intestinal instillation to rats and in vivo administration via an endoscope to pigs. All studies use solution formulation of sodium caprate, which has been widely used as a PE, and two macromolecules, being FITC-dextran 4000 Da and MEDI7219, a GLP-1 receptor agonist peptide. The paper shares our experiences of using these models and the challenges with the in vitro models in mimicking the processes occurring in vivo. The paper highlights the need to consider these differences when translating data generated using these in vitro models for evaluating macromolecules, PE, and combinations thereof for enabling oral delivery.


Asunto(s)
Absorción Intestinal , Mucosa Intestinal , Humanos , Ratas , Animales , Porcinos , Mucosa Intestinal/metabolismo , Células CACO-2 , Intestinos , Administración Oral , Permeabilidad
4.
Mol Pharm ; 20(1): 451-460, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36350845

RESUMEN

Bioavailability of oral drugs often depends on how soluble the active pharmaceutical ingredient is in the fluid present in the small intestine. For efficient drug discovery and development, computational tools are needed for estimating this drug solubility. In this paper, we examined human intestinal fluids collected in the fed state, with coarse-grained molecular dynamics simulations. The experimentally obtained concentrations in aspirated duodenal fluids from five healthy individuals were used in three simulation sets to evaluate the importance of the initial distribution of molecules and the presence of glycerides in the simulation box when simulating the colloidal environment of the human intestinal fluid. We observed self-assembly of colloidal structures of different types: prolate, elongated, and oblate micelles, and vesicles. Glycerides were important for the formation of vesicles, and their absence was shown to induce elongated micelles. We then simulated the impact of digestion and absorption on the different colloidal types. Finally, we looked at the solubilization of three model compounds of increasing lipophilicity (prednisolone, fenofibrate, and probucol) by calculating contact ratios of drug-colloid to drug-water. Our simulation results of colloidal interactions with APIs were in line with experimental solubilization data but showed a dissimilarity to solubility values when comparing fasted-/fed-state ratios between two of the APIs. This work shows that coarse-grained molecular dynamics simulation is a promising tool for investigation of the intestinal fluids, in terms of colloidal attributes and drug solubility.


Asunto(s)
Micelas , Simulación de Dinámica Molecular , Humanos , Coloides/química , Intestinos/química , Solubilidad , Glicéridos , Absorción Intestinal
5.
J Comput Aided Mol Des ; 38(1): 5, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38103089

RESUMEN

Theoretical predictions of the solubilizing capacity of micelles and vesicles present in intestinal fluid are important for the development of new delivery techniques and bioavailability improvement. A balance between accuracy and computational cost is a key factor for an extensive study of numerous compounds in diverse environments. In this study, we aimed to determine an optimal molecular dynamics (MD) protocol to evaluate small-molecule interactions with micelles composed of bile salts and phospholipids. MD simulations were used to produce free energy profiles for three drug molecules (danazol, probucol, and prednisolone) and one surfactant molecule (sodium caprate) as a function of the distance from the colloid center of mass. To address the challenges associated with such tasks, we compared different simulation setups, including freely assembled colloids versus pre-organized spherical micelles, full free energy profiles versus only a few points of interest, and a coarse-grained model versus an all-atom model. Our findings demonstrate that combining these techniques is advantageous for achieving optimal performance and accuracy when evaluating the solubilization capacity of micelles. All-atom (AA) and coarse-grained (CG) umbrella sampling (US) simulations and point-wise free energy (FE) calculations were compared to their efficiency to computationally analyze the solubilization of active pharmaceutical ingredients in intestinal fluid colloids.


Asunto(s)
Micelas , Simulación de Dinámica Molecular , Coloides , Tensoactivos
6.
Mol Pharm ; 19(11): 3922-3933, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36135343

RESUMEN

Proteins, and in particular whey proteins, have recently been introduced as a promising excipient class for stabilizing amorphous solid dispersions. However, despite the efficacy of the approach, the molecular mechanisms behind the stabilization of the drug in the amorphous form are not yet understood. To investigate these, we used experimental and computational techniques to study the impact of drug loading on the stability of protein-stabilized amorphous formulations. ß-Lactoglobulin, a major component of whey, was chosen as a model protein and indomethacin as a model drug. Samples, prepared by either ball milling or spray drying, formed single-phase amorphous solid dispersions with one glass transition temperature at drug loadings lower than 40-50%; however, a second glass transition temperature appeared at drug loadings higher than 40-50%. Using molecular dynamics simulations, we found that a drug-rich phase occurred at a loading of 40-50% and higher, in agreement with the experimental data. The simulations revealed that the mechanisms of the indomethacin stabilization by ß-lactoglobulin were a combination of (a) reduced mobility of the drug molecules in the first drug shell and (b) hydrogen-bond networks. These networks, formed mostly by glutamic and aspartic acids, are situated at the ß-lactoglobulin surface, and dependent on the drug loading (>40%), propagated into the second and subsequent drug layers. The simulations indicate that the reduced mobility dominates at low (<40%) drug loadings, whereas hydrogen-bond networks dominate at loadings up to 75%. The computer simulation results agreed with the experimental physical stability data, which showed a significant stabilization effect up to a drug fraction of 70% under dry storage. However, under humid conditions, stabilization was only sufficient for drug loadings up to 50%, confirming the detrimental effect of humidity on the stability of protein-stabilized amorphous formulations.


Asunto(s)
Indometacina , Lactoglobulinas , Indometacina/química , Simulación por Computador , Excipientes/química , Composición de Medicamentos/métodos , Hidrógeno , Estabilidad de Medicamentos , Solubilidad
7.
Mol Pharm ; 19(7): 2564-2572, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35642793

RESUMEN

In this work, we studied the intestinal absorption of a peptide with a molecular weight of 4353 Da (MEDI7219) and a protein having a molecular weight of 11 740 Da (PEP12210) in the rat intestinal instillation model and compared their absorption to fluorescein isothiocyanate (FITC)-labeled dextrans of similar molecular weights (4 and 10 kDa). To increase the absorption of the compounds, the permeation enhancer sodium caprate (C10) was included in the liquid formulations at concentrations of 50 and 300 mM. All studied compounds displayed an increased absorption rate and extent when delivered together with 50 mM C10 as compared to control formulations not containing C10. The time period during which the macromolecules maintained an increased permeability through the intestinal epithelium was approximately 20 min for all studied compounds at 50 mM C10. For the formulations containing 300 mM C10, it was noted that the dextrans displayed an increased absorption rate (compared to 50 mM C10), and their absorption continued for at least 60 min. The absorption rate of MEDI7219, on the other hand, was similar at both studied C10 concentrations, but the duration of absorption was extended at the higher enhancer concentration, leading to an increase in the overall extent of absorption. The absorption of PEP12210 was similar in terms of the rate and duration at both studied C10 concentrations. This is likely caused by the instability of this molecule in the intestinal lumen. The degradation decreases the luminal concentrations over time, which in turn limits absorption at time points beyond 20 min. The results from this study show that permeation enhancement effects cannot be extrapolated between different types of macromolecules. Furthermore, to maximize the absorption of a macromolecule delivered together with C10, prolonging the duration of absorption appears to be important. In addition, the macromolecule needs to be stable enough in the intestinal lumen to take advantage of the prolonged absorption time window enabled by the permeation enhancer.


Asunto(s)
Dextranos , Absorción Intestinal , Animales , Fluoresceína-5-Isotiocianato , Mucosa Intestinal/metabolismo , Permeabilidad , Ratas
8.
Mol Pharm ; 19(1): 200-212, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34928160

RESUMEN

In this work, we set out to better understand how the permeation enhancer sodium caprate (C10) influences the intestinal absorption of macromolecules. FITC-dextran 4000 (FD4) was selected as a model compound and formulated with 50-300 mM C10. Absorption was studied after bolus instillation of liquid formulation to the duodenum of anesthetized rats and intravenously as a reference, whereafter plasma samples were taken and analyzed for FD4 content. It was found that the AUC and Cmax of FD4 increased with increasing C10 concentration. Higher C10 concentrations were associated with an increased and extended absorption but also increased epithelial damage. Depending on the C10 concentration, the intestinal epithelium showed significant recovery already at 60-120 min after administration. At the highest studied C10 concentrations (100 and 300 mM), the absorption of FD4 was not affected by the colloidal structures of C10, with similar absorption obtained when C10 was administered as micelles (pH 8.5) and as vesicles (pH 6.5). In contrast, the FD4 absorption was lower when C10 was administered at 50 mM formulated as micelles as compared to vesicles. Intestinal dilution of C10 and FD4 revealed a trend of decreasing FD4 absorption with increasing intestinal dilution. However, the effect was smaller than that of altering the total administered C10 dose. Absorption was similar when the formulations were prepared in simulated intestinal fluids containing mixed micelles of bile salts and phospholipids and in simple buffer solution. The findings in this study suggest that in order to optimally enhance the absorption of macromolecules, high (≥100 mM) initial intestinal C10 concentrations are likely needed and that both the concentration and total dose of C10 are important parameters.


Asunto(s)
Coloides/química , Ácidos Decanoicos/farmacología , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Animales , Microscopía por Crioelectrón , Ácidos Decanoicos/análisis , Ácidos Decanoicos/química , Dextranos/farmacología , Sinergismo Farmacológico , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacología , Mucosa Intestinal/química , Masculino , Ratas , Ratas Wistar
9.
Molecules ; 27(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234733

RESUMEN

An attractive approach to increase the aqueous apparent solubility of poorly soluble drugs is to formulate them in their amorphous state. In the present study, celecoxib, a poorly soluble drug, was successfully loaded into mesoporous magnesium carbonate (MMC) in its amorphous state via a solvent evaporation method. Crystallization of celecoxib was suppressed, and no reaction with the carrier was detected. The MMC formulation was evaluated in vitro and in vivo in terms of oral bioavailability. Celebra®, a commercially available formulation, was used as a reference. The two celecoxib formulations were orally administrated in male rats (average of n = 6 animals per group), and blood samples for plasma were taken from all animals at different time points after administration. There was no statistical difference (p > 0.05) in AUCinf between the two formulations. The results showed that MMC may be a promising drug delivery excipient for increasing the bioavailability of compounds with solubility-limited absorption.


Asunto(s)
Excipientes , Administración Oral , Animales , Disponibilidad Biológica , Celecoxib/química , Magnesio , Masculino , Ratas , Solubilidad , Solventes/química
10.
Mol Pharm ; 18(11): 4079-4089, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34613730

RESUMEN

The solution behavior and membrane transport of multidrug formulations were herein investigated in a biorelevant medium simulating fasted conditions. Amorphous multidrug formulations were prepared by the solvent evaporation method. Combinations of atazanavir (ATV) and ritonavir (RTV) and felodipine (FDN) and indapamide (IPM) were prepared and stabilized by a polymer for studying their dissolution (under non-sink conditions) and membrane transport in fasted state simulated intestinal fluid (FaSSIF). The micellar solubilization by FaSSIF enhanced the amorphous solubility of the drugs to different extents. Similar to buffer, the maximum achievable concentration of drugs in combination was reduced in FaSSIF, but the extent of reduction was affected by the degree of FaSSIF solubilization. Dissolution studies of ATV and IPM revealed that the amorphous solubility of these two drugs was not affected by FaSSIF solubilization. In contrast, RTV was significantly affected by FaSSIF solubilization with a 30% reduction in the maximum achievable concentration upon combination to ATV, compared to 50% reduction in buffer. This positive deviation by FaSSIF solubilization was not reflected in the mass transport-time profiles. Interestingly, FDN concentrations remain constant until the amount of IPM added was over 1000 µg/mL. No decrease in the membrane transport of FDN was observed for a 1:1 M ratio of FDN-IPM combination. This study demonstrates the importance of studying amorphous multidrug formulations under physiologically relevant conditions to obtain insights into the performance of these formulations after oral administration.


Asunto(s)
Líquidos Corporales/química , Química Farmacéutica/métodos , Administración Oral , Sulfato de Atazanavir/administración & dosificación , Sulfato de Atazanavir/química , Sulfato de Atazanavir/farmacocinética , Membrana Celular/metabolismo , Combinación de Medicamentos , Felodipino/administración & dosificación , Felodipino/química , Felodipino/farmacocinética , Indapamida/administración & dosificación , Indapamida/química , Indapamida/farmacocinética , Intestinos , Membranas Artificiales , Ritonavir/administración & dosificación , Ritonavir/química , Ritonavir/farmacocinética , Solubilidad
11.
Mol Pharm ; 18(6): 2254-2262, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33951909

RESUMEN

Poor aqueous drug solubility represents a major challenge in oral drug delivery. A novel approach to overcome this challenge is drug amorphization inside a tablet, that is, on-demand drug amorphization. The amorphous form is a thermodynamically instable, disordered solid-state with increased dissolution rate and solubility compared to its crystalline counterpart. During on-demand drug amorphization, the drug molecularly disperses into a polymer to form an amorphous solid at elevated temperatures inside a tablet. This study investigates, for the first time, the utilization of photothermal plasmonic nanoparticles for on-demand drug amorphization as a new pharmaceutical application. For this, near-IR photothermal plasmonic nanoparticles were tableted together with a crystalline drug (celecoxib) and a polymer (polyvinylpyrrolidone). The tablets were subjected to a near-IR laser at different intensities and durations to study the rate of drug amorphization under each condition. During laser irradiation, the plasmonic nanoparticles homogeneously heated the tablet. The temperature was directly related to the rate and degree of amorphization. Exposure times as low as 180 s at 1.12 W cm-2 laser intensity with only 0.25 wt % plasmonic nanoparticles and up to 50 wt % drug load resulted in complete drug amorphization. Therefore, near-IR photothermal plasmonic nanoparticles are promising excipients for on-demand drug amorphization with laser irradiation.


Asunto(s)
Celecoxib/química , Composición de Medicamentos/métodos , Excipientes/efectos de la radiación , Rayos Láser , Nanopartículas/efectos de la radiación , Composición de Medicamentos/instrumentación , Excipientes/química , Nanopartículas/química , Povidona/química , Solubilidad/efectos de la radiación , Comprimidos
12.
Langmuir ; 37(33): 10200-10213, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34379976

RESUMEN

Self-emulsifying drug-delivery systems (SEDDS) have been extensively shown to increase oral absorption of solvation-limited compounds. However, there has been little clinical and commercial use of these formulations, in large part because the demonstrated advantages of SEDDS have been outweighed by our inability to precisely predict drug absorption from SEDDS using current in vitro assays. To overcome this limitation and increase the biological relevancy of in vitro assays, an absorption function can be incorporated using biomimetic membranes. However, the effects that SEDDS have on the integrity of a biomimetic membrane are not known. In this study, a quartz crystal microbalance with dissipation monitoring and total internal reflection fluorescence microscopy were employed as complementary methods to in vitro lipolysis-permeation assays to characterize the interaction of various actively digested SEDDS with a liquescent artificial membrane comprising lecithin in dodecane (LiDo). Observations from surface analysis showed that interactions between the digesting SEDDS and LiDo membrane coincided with inflection points in the digestion profiles. Importantly, no indications of membrane damage could be observed, which was supported by flux profiles of the lipophilic model drug felodipine (FEL) and impermeable marker Lucifer yellow on the basal side of the membrane. There was a correlation between the digestion kinetics of the SEDDS and the flux of FEL, but no clear correlation between solubilization and absorption profiles. Membrane interactions were dependent on the composition of lipids within each SEDDS, with the more digestible lipids leading to more pronounced interactions, but in all cases, the integrity of the membrane was maintained. These insights demonstrate that LiDo membranes are compatible with in vitro lipolysis assays for improving predictions of drug absorption from lipid-based formulations.


Asunto(s)
Biomimética , Sistemas de Liberación de Medicamentos , Administración Oral , Emulsiones , Intestino Delgado , Lecitinas , Solubilidad
13.
Molecules ; 26(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34770762

RESUMEN

In the current work, mesoporous magnesium carbonate (MMC) was used to suppress crystallization of the poorly soluble drug celecoxib (CXB). This resulted in both a higher dissolution rate and supersaturation of the substance in vitro as well as an increased transfer of CXB over a Caco-2 cell membrane mimicking the membrane in the small intestine. The CXB flux over the cell membrane showed a linear behavior over the explored time period. These results indicate that MMC may be helpful in increasing the bioavailability and obtaining a continuous release of CXB, and similar substances, in vivo. Neusilin US2 was used as a reference material and showed a more rapid initial release with subsequent crystallization of the incorporated CXB in the release media. The presented results form the foundation of future development of MMC as a potential carrier for poorly soluble drugs.


Asunto(s)
Celecoxib/farmacocinética , Permeabilidad de la Membrana Celular , Membrana Celular/metabolismo , Mucosa Intestinal/metabolismo , Magnesio/metabolismo , Células CACO-2 , Celecoxib/química , Celecoxib/metabolismo , Liberación de Fármacos , Humanos , Magnesio/química , Modelos Biológicos , Porosidad , Solubilidad , Análisis Espectral
14.
Angew Chem Int Ed Engl ; 60(4): 2069-2073, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-32926534

RESUMEN

There is an urgent demand for analytic approaches that enable precise and representative quantification of the transport of biologically active compounds across cellular membranes. In this study, we established a new means to monitor membrane permeation kinetics, using total internal reflection fluorescence microscopy confined to a ≈500 nm thick mesoporous silica substrate, positioned underneath a planar supported cell membrane mimic. This way, we demonstrate spatiotemporally resolved membrane permeation kinetics of a small-molecule model drug, felodipine, while simultaneously controlling the integrity of, and monitoring the drug binding to, the cell membrane mimic. By contrasting the permeation behaviour of pure felodipine with felodipine coupled to the permeability enhancer caprylate (C8), we provide evidence for C8-facilitated transport across lipid membranes, thus validating the potential for this approach to successfully quantify carrier system-induced changes to cellular membrane permeation.


Asunto(s)
Lípidos de la Membrana/metabolismo , Microscopía Fluorescente/métodos , Preparaciones Farmacéuticas , Dióxido de Silicio/química , Permeabilidad , Farmacocinética , Porosidad
15.
Mol Pharm ; 17(10): 4018-4028, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32870692

RESUMEN

Using fixed dose combinations of drugs instead of administering drugs separately can be beneficial for both patients and the health care system, but the current understanding of how multidrug formulations work at the molecular level is still in its infancy. Here, we explore dissolution, solubility, and supersaturation of various drug combinations in amorphous formulations. The effect of chemical structural similarity on combination behavior was investigated by using structurally related compounds of both drugs. The effect of polymer type on solution behavior was also evaluated using chemically diverse polymers. Indapamide (IPM) concentration decreased when combined with felodipine (FDN) or its analogues, which occurred even when the IPM solution was undersaturated. The extent of solubility decrease of FDN was less than that of IPM from the dissolution of an equimolar formulation of the drugs. No significant solubility decrease was observed for FDN at low contents of IPM which was also observed for other dihydropyridines, whereas FDN decreases at high contents of IPM. This was explained by the complex nature of the colloidal precipitates of the combinations which impacts the chemical potential of the drugs in solution at different levels. The maximum achievable concentration of FDN and IPM during dissolution of the polyvinylpyrrolidone-based amorphous solid dispersion was higher than the value measured with the hydroxypropyl methylcellulose acetate succinate-based formulation. This emphasizes the significance of molecular properties and chemical diversity of drugs and polymers on solution chemistry and solubility profiles. These findings may apply to drugs administered as a single dosage form or in separate dosage forms and hence need to be well controlled to assure effective treatments and patient safety.


Asunto(s)
Antihipertensivos/farmacocinética , Química Farmacéutica , Composición de Medicamentos/métodos , Antihipertensivos/química , Antihipertensivos/uso terapéutico , Cristalización , Combinación de Medicamentos , Interacciones Farmacológicas , Liberación de Fármacos , Felodipino/química , Felodipino/farmacocinética , Felodipino/uso terapéutico , Humanos , Hipertensión/tratamiento farmacológico , Indapamida/química , Indapamida/farmacocinética , Indapamida/uso terapéutico , Metilcelulosa/análogos & derivados , Metilcelulosa/química , Seguridad del Paciente , Povidona/química , Solubilidad , Soluciones/química
16.
Mol Pharm ; 17(10): 3837-3844, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32787279

RESUMEN

Efficient delivery of oral drugs is dependent on their solubility in human intestinal fluid, a complex and dynamic fluid that contains colloidal structures composed of small molecules. These structures solubilize poorly water-soluble compounds, increasing their apparent solubility, and possibly their bioavailability. In this study, we conducted coarse-grained molecular dynamics simulations with data from duodenal fluid samples previously acquired from five healthy volunteers. In these simulations, we observed the self-assembly of mixed micelles of bile salts, phospholipids, and free fatty acids. The micelles were ellipsoids with a size range of 4-7 nm. Next, we investigated micelle affinities of three model drugs. The affinities in our simulation showed the same trend as literature values for the solubility enhancement of drugs in human intestinal fluids. This type of simulations is useful for studies of events and interactions taking place in the small intestinal fluid.


Asunto(s)
Variación Biológica Poblacional , Líquidos Corporales/química , Duodeno/química , Micelas , Administración Oral , Disponibilidad Biológica , Líquidos Corporales/metabolismo , Duodeno/metabolismo , Voluntarios Sanos , Humanos , Simulación de Dinámica Molecular , Tamaño de la Partícula , Solubilidad
17.
Mol Pharm ; 17(5): 1458-1469, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-31951139

RESUMEN

Antibiotic resistance is a major public health threat worldwide, and among others, about 80% of cystic fibrosis patients have chronic Pseudomonas aeruginosa (PA) lung infection resistant to many current antibiotics. Novel treatment strategies are therefore urgently needed. For lung infections, direct delivery of treatments to the site of action in the airway can achieve a higher local concentration with minimal systemic exposure and hence avoid risks of unwanted systemic adverse effects. Previously, a rat preclinical disease model for PA chronic lung infections has been reported. However, the role of this disease model in the development of new treatment has not been thoroughly evaluated. In this study, tobramycin (TOB) was used as a model antibiotic to evaluate the application of this preclinical disease model for PA treatments. The obtained data were used for pharmacokinetic-pharmacodynamic (PKPD) modeling. Plasma samples following pulmonary delivery of TOB via different dosing methods as well as growth and efficacy data from the chronic lung infection disease model following TOB treatments were collected for analysis and modeling. The developed PKPD model incorporates a semimechanistic description on biofilm development in chronic infections to allow the evaluation of drug action on bacteria in different states (i.e., planktonic, biofilm, and latent) and describes the available data from the efficacy study. The PKPD model can be used to support the application of the preclinical lung infection disease model by providing a quantitative description of the drug exposure-response relationship and a mechanistic platform to integrate all available PK and PKPD data with predictive capacity. With the support of appropriate experimental designs, the model can be further extended for other applications to, for instance, study the transition of bacteria between states and describe drug actions on biofilms.


Asunto(s)
Antibacterianos/farmacocinética , Desarrollo de Medicamentos , Pulmón/metabolismo , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Tobramicina/farmacocinética , Animales , Enfermedad Crónica , Masculino , Modelos Biológicos , Ratas , Ratas Sprague-Dawley
18.
Mol Pharm ; 17(11): 4226-4240, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32960068

RESUMEN

Transient permeability enhancers (PEs), such as caprylate, caprate, and salcaprozate sodium (SNAC), improve the bioavailability of poorly permeable macromolecular drugs. However, the effects are variable across individuals and classes of macromolecular drugs and biologics. Here, we examined the influence of bile compositions on the ability of membrane incorporation of three transient PEs-caprylate, caprate, and SNAC-using coarse-grained molecular dynamics (CG-MD). The availability of free PE monomers, which are important near the absorption site, to become incorporated into the membrane was higher in fasted-state fluids than that in fed-state fluids. The simulations also showed that transmembrane perturbation, i.e., insertion of PEs into the membrane, is a key mechanism by which caprylate and caprate increase permeability. In contrast, SNAC was mainly adsorbed onto the membrane surface, indicating a different mode of action. Membrane incorporation of caprylate and caprate was also influenced by bile composition, with more incorporation into fasted- than fed-state fluids. The simulations of transient PE interaction with membranes were further evaluated using two experimental techniques: the quartz crystal microbalance with dissipation technique and total internal reflection fluorescence microscopy. The experimental results were in good agreement with the computational simulations. Finally, the kinetics of membrane insertion was studied with CG-MD. Variation in micelle composition affected the insertion rates of caprate monomer insertion and expulsion from the micelle surface. In conclusion, this study suggests that the bile composition and the luminal composition of the intestinal fluid are important factors contributing to the interindividual variability in the absorption of macromolecular drugs administered with transient PEs.


Asunto(s)
Bilis/química , Caprilatos/administración & dosificación , Caprilatos/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Decanoatos/administración & dosificación , Decanoatos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Sustancias Macromoleculares/administración & dosificación , Ácidos y Sales Biliares/metabolismo , Disponibilidad Biológica , Voluntarios Sanos , Humanos , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Simulación de Dinámica Molecular , Fosfolípidos/metabolismo
19.
Pharm Res ; 37(6): 99, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32435855

RESUMEN

PURPOSE: To evaluate the performance of artificial membranes in in vitro lipolysis-permeation assays useful for absorption studies of drugs loaded in lipid-based formulations (LBFs). METHODS: Polycarbonate as well as PVDF filters were treated with hexadecane, or lecithin in n-dodecane solution (LiDo) to form artificial membranes. They were thereafter used as absorption membranes separating two compartments mimicking the luminal and serosal side of the intestine in vitro. Membranes were subjected to dispersions of an LBF that had been digested by porcine pancreatin and spiked with the membrane integrity marker Lucifer Yellow (LY). Three fenofibrate-loaded LBFs were used to explore the in vivo relevance of the assay. RESULTS: Of the explored artificial membranes, only LiDo applied to PVDF was compatible with lipolysis by porcine pancreatin. Formulation ranking based on mass transfer in the LiDo model exposed was the same as drug release in single-compartment lipolysis. Ranking based on observed apparent permeability coefficients of fenofibrate with different LBFs were the same as those obtained in a cell-based model. CONCLUSIONS: The LiDo membrane was able to withstand lipolysis for a sufficient assay period. However, the assay with porcine pancreatin as digestive agent did not predict the in vivo ranking of the assayed formulations better than existing methods. Comparison with a Caco-2 based assay method nonetheless indicates that the in vitro in vivo relationship of this cell-free model could be improved with alternative digestive agents.


Asunto(s)
Portadores de Fármacos/química , Fenofibrato/química , Lípidos/química , Lipólisis , Membranas Artificiales , Administración Oral , Adsorción , Alcanos/química , Animales , Bioensayo/métodos , Células CACO-2 , Digestión , Composición de Medicamentos/métodos , Liberación de Fármacos , Excipientes/química , Fenofibrato/administración & dosificación , Humanos , Lecitinas/química , Modelos Biológicos , Pancreatina/metabolismo , Permeabilidad , Solubilidad , Porcinos
20.
Mol Pharm ; 16(3): 921-930, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30628771

RESUMEN

Lipid-based formulations (LBFs) are a delivery strategy to enhance intestinal absorption of poorly water-soluble drugs. LBF performance is typically evaluated by in vitro lipolysis studies, but these do not accurately predict the in vivo performance. One possible reason is the absence of an absorptive membrane driving sink conditions in the serosal compartment. To explore the impact of absorption under sink conditions on the performance evaluation, we developed a lipolysis-permeation setup that allows simultaneous investigation of intestinal digestion of an LBF and drug absorption. The setup consists of two chambers, an upper one for digestion (luminal), and a lower, receiving one (serosal), separated by a Caco-2 monolayer. Digestions were performed with immobilized lipase, instead of the pancreatic extract typically used during lipolysis, since the latter has proven incompatible with Caco-2 cells. Danazol-loaded LBFs were used to develop the setup, and fenofibrate-loaded LBFs were used to establish an in vitro in vivo correlation. As in regular lipolysis studies, our setup allows for the evaluation of (i) the extent of digestion and (ii) drug distribution in different phases present during lipolysis of drug-loaded LBFs (i.e., oil, aqueous, and solid phase). In addition, our setup can determine drug permeation across Caco-2 monolayers and hence, the absorptive flux of the compound. The presence of the absorptive monolayer and sink conditions tended to reduce aqueous drug concentrations and supersaturation in the digestion chamber. The drug transfer across the Caco-2 membrane accurately reflected in vivo drug exposure upon administration of three different LBFs loaded with fenofibrate, where the traditional lipolysis setup failed to predict in vivo performance. As the new setup reflects the dynamic processes occurring in the gastrointestinal tract, it is a valuable tool that can be used in the development of LBFs prior to in vivo studies.


Asunto(s)
Química Farmacéutica/métodos , Digestión , Absorción Intestinal , Lipólisis , Modelos Biológicos , Absorción Fisicoquímica , Administración Oral , Células CACO-2 , Danazol/química , Composición de Medicamentos , Fenofibrato/química , Humanos , Técnicas In Vitro , Lipasa/química , Lípidos/química , Membranas Artificiales , Preparaciones Farmacéuticas/química , Solubilidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda