Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Inorg Chem ; 58(9): 6143-6154, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-30964275

RESUMEN

In situ synchrotron powder X-ray diffraction measurements have demonstrated that the isostructural AUO4- x ( A = alkaline earth metal cation) oxides CaUO4- x and α-Sr0.4Ca0.6UO4- x undergo a reversible phase transformation under reducing conditions at high temperatures associated with the ordering of in-plane oxygen vacancies resulting in the lowering of symmetry. When rhombohedral (space group R3̅ m) CaUO4- x and α-Sr0.4Ca0.6UO4- x are heated to 450 and 400 °C, respectively, in a hydrogen atmosphere, they undergo a first-order phase transformation to a single phase structure which can be refined against a triclinic model in space group P1̅, δ-CaUO4- x and δ-Sr0.4Ca0.6UO4- x, where the oxygen vacancies are disordered initially. Continued heating results in the appearance of superlattice reflections, indicating the ordering of in-plane oxygen vacancies. Cooling ordered δ-CaUO4- x and δ-Sr0.4Ca0.6UO4- x to near room temperature results in the reformation of the disordered rhombohedral phases. Essential to the transformation is the generation of a critical amount of oxygen vacancies. Once these are formed, the transformation can be accessed continuously through thermal cycling, showing that the transformations are purely thermodynamic in origin. Stoichiometric structures of both oxides can be recovered by heating oxygen deficient CaUO4- x and α-Sr0.4Ca0.6UO4- x under pure oxygen to high temperatures. When heated in air, the amount of oxygen vacancy defects that form in CaUO4- x and α-Sr0.4Ca0.6UO4- x are found to correlate with the A site composition. The inclusion of the larger Sr2+ cation on the A site reduces defect-defect interactions, which increases the amount of defects that can form and lowers their formation temperature. The relative difference in the amount of defects that form can be understood on the basis of oxygen vacancy and U5+ disordering as shown by both ab initio calculations and estimated oxygen vacancy formation energies based on thermodynamic considerations. This difference in defect-defect interactions consequently introduces variations in the long-range ordered anionic lattice of the δ phases despite the isostructural relationship of the α structures of CaUO4- x and Sr0.4Ca0.6UO4- x. These results are discussed with respect to the influence the A site cation has upon anion defect formation and ordering and are also compared to δ-SrUO4- x, the only other material known to be able to undergo a reversible symmetry lowering and disorder-to-order transformation with increasing temperature.

2.
Inorg Chem ; 57(4): 1735-1743, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29400951

RESUMEN

The minerals studtite, [UO2(η2-O2)(H2O)2]·2H2O, and metastudtite, [UO2(η2-O2)(H2O)2], are uranyl peroxide minerals that are major oxidative alteration phases of UO2 under conditions of geological storage. The dehydration of studtite has been studied using X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy. XPS of the U 4f region shows small but significant differences between studtite and metastudtite, with the 4f binding energy of studtite being the highest reported for a uranyl mineral studied by this technique. Further information about the changes in the electronic structure was elucidated using U M4-edge high-energy resolution X-ray absorption near-edge structure (HR-XANES) spectroscopy, which directly probes f orbital states. The transition from the 3d to 5fσ* orbital is sensitive to variations in the U═Oaxial bond length and to changes in the bond covalency. We report evidence that the covalence in the uranyl fragment decreases upon dehydration. Photoluminescence spectroscopy at near-liquid helium temperatures reveals significant spectral differences between the two materials, correlating with the X-ray spectroscopy results. A theoretical investigation has been conducted on the structures of both studtite and metastudtite and benchmarked to the HR-XANES spectra. These illustrate the sensitivity of the 3d to 5f σ* transition toward U═Oaxial bond variation. Small structural changes upon dehydration have been shown to have an important electronic effect on the uranyl fragment.

3.
Inorg Chem ; 57(10): 5948-5958, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29714481

RESUMEN

In situ synchrotron powder X-ray diffraction measurements have demonstrated that SrUO4 undergoes a reversible phase transformation under reducing conditions at high temperatures, associated with the ordering of oxygen defects resulting in a lowering of crystallographic symmetry. When substoichiometric rhombohedral α-SrUO4- x, in space group R3̅ m with disordered in-plane oxygen defects, is heated above 200 °C in a hydrogen atmosphere it undergoes a first order phase transformation to a (disordered) triclinic polymorph, δ-SrUO4- x, in space group P1̅. Continued heating to above 450 °C results in the appearance of superlattice reflections, due to oxygen-vacancy ordering forming an ordered structure δ-SrUO4- x. Cooling δ-SrUO4- x toward room temperature results in the reformation of the rhombohedral phase α-SrUO4- x with disordered defects, confirming the reversibility of the transformation. This suggests that the transformation, resulting from oxygen vacancy ordering, is not a consequence of sample reduction or decomposition, but rather represents a change in the energetics of the system. A strong reducing atmosphere is required to generate a critical amount of oxygen defects in α-SrUO4- x to enable the transformation to δ-SrUO4- x but once formed the transformation between these two phases can be induced by thermal cycling. The structure of δ-SrUO4- x at 1000 °C was determined using symmetry representation analysis, with the additional reflections indexed to a commensurate distortion vector k = ⟨1/4 1/4 3/4⟩. The ordered 2D layered triclinic structure of δ-SrUO4- x can be considered a structural distortion of the disordered 2D layered rhombohedral α-SrUO4- x structure through the preferential rearrangement of the in-plane oxygen vacancies. Ab initio calculations using density functional theory with self-consistently derived Hubbard U parameter support the assigned ordered defect superstructure model. Entropy changes associated with the temperature dependent short-range ordering of the reduced U species are believed to be important and these are discussed with respect to the results of the ab initio calculations.

4.
Inorg Chem ; 55(18): 9329-34, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27571285

RESUMEN

In situ neutron and synchrotron X-ray diffraction studies demonstrate that SrUO4 acts as an oxygen transfer agent, forming oxygen vacancies under both oxidizing and reducing conditions. Two polymorphs of SrUO4 are stable at room temperature, and the transformation between these is observed to be associated with thermally regulated diffusion of oxygen ions, with partial reduction of the U(6+) playing a role in both the formation of oxygen deficient α-SrUO4-δ and its subsequent transformation to stoichiometric ß-SrUO4. This is supported by ab initio calculations using density functional theory calculations. The oxygen vacancies play a critical role in the first order transition that SrUO4 undergoes near 830 °C. The changes in the oxidation states and U geometry associated with the structural phase transition have been characterized using X-ray absorption spectroscopy, synchrotron X-ray diffraction, and neutron diffraction.

5.
J Comput Chem ; 35(18): 1339-46, 2014 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-24760757

RESUMEN

We performed a density functional theory (DFT) study of the monazite-type ceramics using DFT+U method, where the Hubbard U parameters are derived ab initio, with the main goal in testing the predictive power of this computational method for modeling of f-electron materials that are of interest in nuclear waste management. We show that DFT+U approach with PBEsol as the exchange-correlation functional significantly improves description of structures and thermodynamic parameters of lanthanide-bearing oxides and monazites over commonly used standard DFT (PBE) approach. We found that it is essential to use the Hubbard U parameter derived for a given element and a given structure to reproduce the structural parameters of the measured materials. We obtained exceptionally good description of the structural parameters with U parameter derived using the linear response approach of Cococcioni and de Gironcoli (Phys. Rev. B 2005, 71, 035105). This shows that affordable methods, such as DFT+U with a clever choice of exchange-correlation functional and the Hubbard U parameter can lead to a good description of f-electron materials.

6.
J Phys Chem A ; 118(50): 11797-810, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25412189

RESUMEN

Ability to perform a feasible and reliable computation of thermochemical properties of chemically complex actinide-bearing materials would be of great importance for nuclear engineering. Unfortunately, density functional theory (DFT), which on many instances is the only affordable ab initio method, often fails for actinides. Among various shortcomings, it leads to the wrong estimate of enthalpies of reactions between actinide-bearing compounds, putting the applicability of the DFT approach to the modeling of thermochemical properties of actinide-bearing materials into question. Here we test the performance of DFT+U method--a computationally affordable extension of DFT that explicitly accounts for the correlations between f-electrons - for prediction of the thermochemical properties of simple uranium-bearing molecular compounds and solids. We demonstrate that the DFT+U approach significantly improves the description of reaction enthalpies for the uranium-bearing gas-phase molecular compounds and solids and the deviations from the experimental values are comparable to those obtained with much more computationally demanding methods. Good results are obtained with the Hubbard U parameter values derived using the linear response method of Cococcioni and de Gironcoli. We found that the value of Coulomb on-site repulsion, represented by the Hubbard U parameter, strongly depends on the oxidation state of uranium atom. Last, but not least, we demonstrate that the thermochemistry data can be successfully used to estimate the value of the Hubbard U parameter needed for DFT+U calculations.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda