Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Arch Microbiol ; 205(5): 194, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061655

RESUMEN

In esca disease affecting grapevines, Phaeomoniella chlamydospora and Phaeoacremonium minimum colonize the woody parts of the trunks and arms, where they obtain nutrition from xylem sap and, potentially, from residues resulting from the enzymatic breakdown of lignified cell walls, particularly osidic residues. We quantified the secretion of lignin peroxidase, manganese peroxidase and laccase by these fungi in woody tissues of selectively infected cuttings using immunolabeling and transmission electron microscopy. Our results indicated that the detection of these enzymes was generally higher in tissues infected with Phaeoacremonium minimum. These data were confirmed through immunodetection of enzymes secreted by hyphae of fungi grown in vitro. Additionally, we observed that the supply of various carbohydrates (mono, di, tri and tetrasaccharides and polymers) differentially influenced fungal growth and polypeptide secretion. Since some secreted polypeptides display detrimental effects on grapevine cells, these results raise the question of whether the carbohydrate environment could be a factor affecting the aggressiveness of these pathogens.


Asunto(s)
Vitis , Madera , Madera/microbiología , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Carbohidratos
2.
Environ Monit Assess ; 195(1): 121, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36399221

RESUMEN

The Akkar plain is the second largest agricultural area in Lebanon. This region produces huge amount of regular crops such as maize, fruits, and vegetables. In order to protect the crops, farmers use large quantities of many pesticides (including authorized and prohibited molecules) without respecting the recommended doses. In this work, we wanted to study the evolution of OCP and OPP residues at 3-year intervals in water wells in the Akkar region. Twenty OCPs and 8 OPPs were monitored in eight wells in different villages in the plain and mountains of Akkar. Solid phase extraction (SPE) method was used for pesticide extraction, followed by gas chromatography-mass spectrometry (GC-MS) analysis. The results revealed an increasing concentration of OCPs and OPPs in groundwater over the last 3 years (between 2017 and 2019-2020). This increase in contamination is due to the uncontrolled and still unregulated (by the authorities) use of pesticides, and also to the introduction of new crops. The concentrations found in groundwater confirm that some banned pesticides are still widely used. The calculation of the theoretical pesticide intake suggests that pesticide concentrations in Akkar represent a greater health risk for the population consuming well water during the rainy season.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Residuos de Plaguicidas/análisis , Pozos de Agua , Organofosfatos/análisis , Líbano , Monitoreo del Ambiente , Plaguicidas/análisis
3.
Physiol Plant ; 172(1): 218-232, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33421161

RESUMEN

Actin microfilaments (F-actin) are major components of the cytoskeleton essential for many cellular dynamic processes (vesicle trafficking, cytoplasmic streaming, organelle movements). The aim of this study was to examine whether cortical actin microfilaments might be implicated in the regulation of nutrient uptake in root and leaf cells of Beta vulgaris. Using antibodies raised against actin and the AtSUC1 sucrose transporter, immunochemical assays demonstrated that the expression of actin and a sucrose transporter showed different characteristics, when detected on plasma membrane vesicles (PMVs) purified from roots and from leaves. The in situ immunolabeling of actin and AtSUC1 sites in PMVs and tissues showed their close proximity to the plasma membrane. Using co-labeling in protoplasts, actin and sucrose transporters were localized along the internal border and in the outermost part of the plasma membrane, respectively. This respective membrane co-localization was confirmed on PMVs and in tissues using transmission electronic microscopy. The possible functional role of actin in sucrose uptake (and valine uptake, comparatively) by PMVs and tissues from roots and leaves was examined using the pharmacological inhibitors, cytochalasin B (CB), cytochalasin D (CD), and phalloidin (PH). CB and CD inhibited the sucrose and valine uptake by root tissues in a concentration-dependent manner above 1 µM, whereas PH had no such effect. Comparatively, the toxins inhibited the sucrose and valine uptake in leaf discs to a lesser extent. The inhibition was not due to a hindering of the proton pumping and H+ -ATPase catalytic activity determined in PMVs incubated in presence of these toxins.


Asunto(s)
Beta vulgaris , Actinas , Hojas de la Planta , Sacarosa , Valina
4.
Anaerobe ; 67: 102314, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33359396

RESUMEN

We have a vast knowledge on human intestinal microbiota but it can still be regarded incomplete. One of the objectives of scientists using so-called "omics" techniques is to be interested in the consequences that drugs can have on the composition of the intestinal microbiota and inversely. To date, few publications have reported the effects of drugs on the growth of bacteria composing this microbiota using a "culturomics" approach. We focused on antibiotics commonly prescribed for which the only published are the susceptibility of the pathogenic strains and not that of the commensal strains. The aim of our study was to determine the sensitivity of 30 strains considered to represent the intestinal core microbiota to 8 antibiotics and to study the possible modification of these molecules by bacteria. The 30 bacterial strains were cultured under anaerobic conditions in order to determine their sensitivity to the antibiotics. After 48 h of culture, the supernatants were also analyzed via UHPLC-MS/MS in order to determine if the antibiotics have been chemically modified. Under the current experimental conditions, cefpodoxime, metronidazole, erythromycin, sulfamethozaxole, trimethoprim and the trimethoprim/sulfamethozaxole combination have little impact on the core microbiota strain growth. On the contrary, moxifloxacin and amoxicillin inhibit the growth of numerous strains of our panel. Using UHPLC-MS/MS analyses, we have shown that some antibiotics can be modifed by the bacteria composing the intestinal core microbiome. The bacteria that make up the intestinal microbiota core are impacted by the antibiotics most commonly prescribed in clinics today and inversely.


Asunto(s)
Antibacterianos/farmacología , Cromatografía Liquida/métodos , Microbioma Gastrointestinal/efectos de los fármacos , Espectrometría de Masas en Tándem/métodos , Amoxicilina/farmacología , Humanos , Tamizaje Masivo , Metronidazol/farmacología , Pruebas de Sensibilidad Microbiana , Moxifloxacino/farmacología , Sulfametoxazol/farmacología
5.
Traffic ; 14(12): 1228-41, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24034583

RESUMEN

Saturated fatty acids (SFA) have been reported to alter organelle integrity and function in many cell types, including muscle and pancreatic ß-cells, adipocytes, hepatocytes and cardiomyocytes. SFA accumulation results in increased amounts of ceramides/sphingolipids and saturated phospholipids (PL). In this study, using a yeast-based model that recapitulates most of the trademarks of SFA-induced lipotoxicity in mammalian cells, we demonstrate that these lipid species act at different levels of the secretory pathway. Ceramides mostly appear to modulate the induction of the unfolded protein response and the transcription of nutrient transporters destined to the cell surface. On the other hand, saturated PL, by altering membrane properties, directly impact vesicular budding at later steps in the secretory pathway, i.e. at the trans-Golgi Network level. They appear to do so by increasing lipid order within intracellular membranes which, in turn, alters the recruitment of loose lipid packing-sensing proteins, required for optimal budding, to nascent vesicles. We propose that this latter general mechanism could account for the well-documented deleterious impacts of fatty acids on the last steps of the secretory pathway in several cell types.


Asunto(s)
Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Saccharomyces cerevisiae/metabolismo , Vías Secretoras , Ceramidas/metabolismo , Fosfolípidos/metabolismo , Vesículas Transportadoras/metabolismo , Respuesta de Proteína Desplegada , Red trans-Golgi/metabolismo
6.
Mol Cell Biochem ; 405(1-2): 159-67, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25869678

RESUMEN

Warnericin RK from Staphylococcus warneri and PSMα from Staphylococcus epidermidis are anti-Legionella peptides which were differently classified in a previous study according to their mode of action. Indeed, warnericin RK is highly hemolytic with a bactericidal mode of action, whereas PSMα is poorly hemolytic with a bacteriostatic mode of action toward L. pneumophila. In order to find anti-Legionella peptides which are not hemolytic, a collection of peptides varying in sequence from warnericin RK to PSMα were designed and synthesized, and their anti-Legionella activities, in terms of growth inhibition, permeabilization, and bactericidal effect, as well as their hemolytic activities, were measured and compared. The results showed that some residues, at position 14 for both peptides for instance, were of major importance for bactericidal and hemolytic activities.


Asunto(s)
Sustitución de Aminoácidos/genética , Toxinas Bacterianas/genética , Bacteriocinas/genética , Hemólisis/efectos de los fármacos , Legionella/efectos de los fármacos , Péptidos/genética , Staphylococcus/genética , Antibacterianos/farmacología , Toxinas Bacterianas/farmacología , Bacteriocinas/farmacología , Hemólisis/genética , Péptidos/farmacología , Permeabilidad
7.
Appl Microbiol Biotechnol ; 99(12): 5083-93, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25573468

RESUMEN

A contaminant bacterial strain was found to exhibit an antagonistic activity against Legionella pneumophila, the causative agent of Legionnaires' disease. The bacterial strain was identified as a Bacillus subtilis and named B. subtilis AM1. PCR analysis revealed the presence of the sfp gene, involved in the biosynthesis of surfactin, a lipopeptide with versatile bioactive properties. The bioactive substances were extracted from AM1 cell-free supernatant with ethyl acetate and purified using reversed phase HPLC (RP-HPLC). Subsequent ESI-MS analyses indicated the presence of two active substances with protonated molecular ions at m/z 1008 and 1036 Da, corresponding to surfactin isoforms. Structures of lipopeptides were further determined by tandem mass spectrometry and compared to the spectra of a commercially available surfactin mixture. Surfactin displays an antibacterial spectrum almost restricted to the Legionella genus (MICs range 1-4 µg/mL) and also exhibits a weak activity toward the amoeba Acanthamoeba castellanii, known to be the natural reservoir of L. pneumophila. Anti-biofilm assays demonstrated that 66 µg/mL of surfactin successfully eliminated 90 % of a 6-day-old biofilm. In conclusion, this study reveals for the first time the potent activity of surfactin against Legionella sp. and preformed biofilms thus providing new directions toward the use and the development of lipopeptides for the control of Legionella spread in the environment.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/química , Legionella/efectos de los fármacos , Lipopéptidos/farmacología , Amoeba/efectos de los fármacos , Amoeba/fisiología , Antibacterianos/química , Antibacterianos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Biopelículas/efectos de los fármacos , Legionella/fisiología , Lipopéptidos/química , Lipopéptidos/metabolismo , Datos de Secuencia Molecular
8.
Appl Microbiol Biotechnol ; 99(11): 4879-91, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25592737

RESUMEN

Legionella pneumophila, the major causative agent of Legionnaires' disease, is most often found in the environment in close association with free-living amoebae, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. In the present study, we evaluated the anti-Legionella and anti-Acanthamoeba activities of three alpha-helical antimicrobial peptides (AMPs), namely, NK-2, Ci-MAM-A24, and Ci-PAP-A22, already known for the extraordinary efficacy against other microbes. Our data represent the first demonstration of the activity of a particular AMP against both the human facultative intracellular pathogen L. pneumophila and its pathogenic host, Acanthamoeba castellanii. Interestingly, the most effective peptide, Ci-MAM-A24, was also found to reduce the Legionella cell number within amoebae. Accordingly, this peptide was immobilized on gold surfaces to assess its antimicrobial activity. Surfaces were characterized, and activity studies revealed that the potent bactericidal activity of the peptide was conserved after its immobilization. In the frame of elaborating anti-Legionella surfaces, Ci-MAM-A24 represents, by its direct and indirect activity against Legionella, a potent peptide template for biological control of the bacterium in plumbings.


Asunto(s)
Acanthamoeba castellanii/efectos de los fármacos , Péptidos Catiónicos Antimicrobianos/farmacología , Legionella pneumophila/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Microscopía , Pruebas de Sensibilidad Parasitaria
9.
World J Microbiol Biotechnol ; 30(4): 1207-17, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24189971

RESUMEN

Nine lactic acid bacteria strains showing bacteriocin-like activity were isolated from various fresh fish viscera. The following species were identified based on 16S rDNA sequences: Enterococcus durans (7 isolates), Lactococcus lactis (1) and Enterococcus faecium (1). These strains were active against Listeria innocua and other LAB. Random amplified polymorphic DNA analyses showed four major patterns for the E. durans species. PCR analyses revealed a nisin gene in the genome of the Lc. lactis strain. Genes coding enterocins A, B and P were found in the genome of the E. faecium isolate. Enterocins A and B genes were also present in the genome of E. durans GM19. Hence, this is the first report describing E. durans strains producing enterocins A and B. Electrospray ionization mass spectrometry revealed that the purified bacteriocin produced by the E. durans GMT18 strain had an exact molecular mass of 6,316.89 Da. This bacteriocin was designated as durancin GMT18. Edman sequencing failed to proceed; suggesting that durancin GTM18 may contain terminal lanthionine residues. Overall, the results obtained revealed the presence of a variety of enterococci in Mediterranean fish viscera, as evidenced by their genetic profiles and abilities to produce different bacteriocins. These strains could be useful for food biopreservation or as probiotics.


Asunto(s)
Bacteriocinas/metabolismo , Peces/microbiología , Lactobacillales/clasificación , Lactobacillales/metabolismo , Animales , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácido Láctico/metabolismo , Lactobacillales/genética , Lactobacillales/aislamiento & purificación , Mar Mediterráneo , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vísceras/microbiología
10.
Stem Cells ; 30(4): 719-31, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22290807

RESUMEN

Neural stem cells (NSC) persist in the adult mammalian brain, within the subventricular zone (SVZ). The endogenous mechanisms underpinning SVZ stem and progenitor cell proliferation are not fully elucidated. Vitamin K-dependent proteins (VKDPs) are mainly secreted factors that were initially discovered as major regulators of blood coagulation. Warfarin ((S(-)-3-acetonylbenzyl)-4-hydroxycoumarin)), a widespread anticoagulant, is a vitamin K antagonist that inhibits the production of functional VKDP. We demonstrate that the suppression of functional VKDPs production, in vitro, by exposure of SVZ cell cultures to warfarin or, in vivo, by its intracerebroventricular injection to mice, leads to a substantial increase in SVZ cell proliferation. We identify the anticoagulant factors, protein S and its structural homolog Gas6, as the two only VKDPs produced by SVZ cells and describe the expression and activation pattern of their Tyro3, Axl, and Mer tyrosine kinase receptors. Both in vitro and in vivo loss of function studies consisting in either Gas6 gene invalidation or in endogenous protein S neutralization, provided evidence for an important novel regulatory role of these two VKDPs in the SVZ neurogenic niche. Specifically, we show that while a loss of Gas6 leads to a reduction in the numbers of stem-like cells and in olfactory bulb neurogenesis, endogenous protein S inhibits SVZ cell proliferation. Our study opens up new perspectives for investigating further the role of vitamin K, VKDPs, and anticoagulants in NSC biology in health and disease.


Asunto(s)
Ventrículos Cerebrales/citología , Nicho de Células Madre , Vitamina K/metabolismo , Animales , Apoptosis/efectos de los fármacos , Ligasas de Carbono-Carbono/metabolismo , Proliferación Celular/efectos de los fármacos , Ventrículos Cerebrales/enzimología , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Oxigenasas de Función Mixta/metabolismo , Proteína S/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Ratas Wistar , Proteínas Tirosina Quinasas Receptoras/metabolismo , Nicho de Células Madre/efectos de los fármacos , Vitamina K/antagonistas & inhibidores , Vitamina K Epóxido Reductasas , Warfarina/administración & dosificación , Warfarina/farmacología , Tirosina Quinasa del Receptor Axl
11.
Appl Microbiol Biotechnol ; 97(12): 5401-12, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23053077

RESUMEN

Warnericin RK is a small cationic peptide produced by Staphylococcus warneri RK. This peptide has an antimicrobial spectrum of activity almost restricted to the Legionella genus. It is a membrane-active peptide with a proposed detergent-like mechanism of action at high concentration. Moreover, the fatty acids content of Legionella was shown to modulate the peptide activity. In order to decipher the mode of action in details using solid-state NMR spectroscopy, large amount of an isotopic labeled peptide is required. Since it is less expensive to obtain such a peptide biologically, we report here methods to express warnericin RK in Escherichia coli with or without a fusion partner and to purify resulting recombinant peptides. The cDNA fragment encoding warnericin RK was synthesized and ligated into three expression vectors. Two fusion peptides, carrying polyhistidine tag in N- or C-terminal and a native peptide, without tag, were expressed in E. coli cells. Fusion peptides were purified, with a yield of 3 mg/l, by affinity chromatography and reverse-phase HPLC. The recombinant native peptide was purified using a two-step purification method consisting of a hydrophobic chromatography followed by a reverse-phase HPLC step with a yield of 1.4 mg/l. However, the anti-Legionella activity was lower for both tagged peptide probably because of structural modifications. So, the native recombinant peptide was preferentially chosen for (15)N-labeling experiments. Our results suggest that the developed production and purification procedures will be useful in obtaining a large quantity of recombinant isotope-labeled warnericin RK for further studies.


Asunto(s)
Bacteriocinas/aislamiento & purificación , Bacteriocinas/farmacología , Legionella/efectos de los fármacos , Bacteriocinas/genética , Cromatografía de Afinidad , Cromatografía Líquida de Alta Presión , Escherichia coli/genética , Expresión Génica , Vectores Genéticos , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología
12.
Front Cell Infect Microbiol ; 13: 1292233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029256

RESUMEN

For several decades, questions have been raised about the effects of endocrine disruptors (ED) on environment and health. In humans, EDs interferes with hormones that are responsible for the maintenance of homeostasis, reproduction and development and therefore can cause developmental, metabolic and reproductive disorders. Because of their ubiquity in the environment, EDs can adversely impact microbial communities and pathogens virulence. At a time when bacterial resistance is inevitably emerging, it is necessary to understand the effects of EDs on the behavior of pathogenic bacteria and to identify the resulting mechanisms. Increasing studies have shown that exposure to environmental EDs can affect bacteria physiology. This review aims to highlight current knowledge of the effect of EDs on the virulence of human bacterial pathogens and discuss the future directions to investigate bacteria/EDs interaction. Given the data presented here, extended studies are required to understand the mechanisms by which EDs could modulate bacterial phenotypes in order to understand the health risks.


Asunto(s)
Disruptores Endocrinos , Humanos , Virulencia , Hormonas , Homeostasis , Fenotipo
13.
Environ Microbiol Rep ; 15(6): 740-756, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37586891

RESUMEN

Anthropogenic activities contribute to the spread of chemicals considered as endocrine disruptors (ED) in freshwater ecosystems. While several studies have reported interactions of EDs with organisms in those ecosystems, very few have assessed the effect of these compounds on pathogenic bacteria. Here we have evaluated the impact of five EDs found in aquatic resources on the virulence of human pathogen P. aeruginosa. ED concentrations in French aquatic resources of bisphenol A (BPA), dibutyl phthalate (DBP), ethylparaben (EP), methylparaben (MP) and triclosan (TCS) at mean molar concentration were 1.13, 3.58, 0.53, 0.69, and 0.81 nM respectively. No impact on bacterial growth was observed at EDs highest tested concentration. Swimming motility of P. aeruginosa decreased to 28.4% when exposed to EP at 100 µM. Swarming motility increased, with MP at 1 nM, 10 and 100 µM (1.5-fold); conversely, a decrease of 78.5%, with DBP at 100 µM was observed. Furthermore, exposure to 1 nM BPA, DBP and EP increased biofilm formation. P. aeruginosa adhesion to lung cells was two-fold higher upon exposure to 1 nM EP. We demonstrate that ED exposure may simultaneously decrease mobility and increase cell adhesion and biofilm formation, which may promote colonisation and establishment of the pathogen.


Asunto(s)
Disruptores Endocrinos , Pseudomonas aeruginosa , Humanos , Disruptores Endocrinos/toxicidad , Ecosistema , Virulencia , Dibutil Ftalato/farmacología , Biopelículas
14.
Microorganisms ; 11(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37374877

RESUMEN

The release of a wide variety of persistent chemical contaminants into wastewater has become a growing concern due to their potential health and environmental risks. While the toxic effects of these pollutants on aquatic organisms have been extensively studied, their impact on microbial pathogens and their virulence mechanisms remains largely unexplored. This research paper focuses on the identification and prioritization of chemical pollutants that increase bacterial pathogenicity, which is a public health concern. In order to predict how chemical compounds, such as pesticides and pharmaceuticals, would affect the virulence mechanisms of three bacterial strains (Escherichia coli K12, Pseudomonas aeruginosa H103, and Salmonella enterica serovar. Typhimurium), this study has developed quantitative structure-activity relationship (QSAR) models. The use of analysis of variance (ANOVA) functions assists in developing QSAR models based on the chemical structure of the compounds, to predict their effect on the growth and swarming behavior of the bacterial strains. The results showed an uncertainty in the created model, and that increases in virulence factors, including growth and motility of bacteria, after exposure to the studied compounds are possible to be predicted. These results could be more accurate if the interactions between groups of functions are included. For that, to make an accurate and universal model, it is essential to incorporate a larger number of compounds of similar and different structures.

15.
Sci Rep ; 13(1): 22145, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092873

RESUMEN

Phthalates constitute a family of anthropogenic chemicals developed to be used in the manufacture of plastics, solvents, and personal care products. Their dispersion and accumulation in many environments can occur at all stages of their use (from synthesis to recycling). However, many phthalates together with other accumulated engineered chemicals have been shown to interfere with hormone activities. These compounds are also in close contact with microorganisms that are free-living, in biofilms or in microbiota, within multicellular organisms. Herein, the activity of several phthalates and their substitutes were investigated on the opportunistic pathogen Legionella pneumophila, an aquatic microbe that can infect humans. Beside showing the toxicity of some phthalates, data suggested that Acetyl tributyl citrate (ATBC) and DBP (Di-n-butyl phthalate) at environmental doses (i.e. 10-6 M and 10-8 M) can modulate Legionella behavior in terms of motility, biofilm formation and response to antibiotics. A dose of 10-6 M mostly induced adverse effects for the bacteria, in contrast to a dose of 10-8 M. No perturbation of virulence towards Acanthamoeba castellanii was recorded. These behavioral alterations suggest that L. pneumophila is able to sense ATBC and DBP, in a cross-talk that either mimics the response to a native ligand, or dysregulates its physiology.


Asunto(s)
Legionella pneumophila , Legionella , Ácidos Ftálicos , Humanos , Legionella pneumophila/fisiología , Ácidos Ftálicos/farmacología , Biopelículas
16.
Biochim Biophys Acta ; 1808(4): 1146-53, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21182824

RESUMEN

Warnericin RK is an antimicrobial peptide, produced by a Staphyloccocus warneri strain, described to be specifically active against Legionella, the pathogenic bacteria responsible for Legionnaires' disease. Warnericin RK is an amphiphilic alpha-helical peptide, which possesses a detergent-like mode of action. Two others peptides, δ-hemolysin I and II, produced by the same S. warneri strain, are highly similar to S. aureus δ-hemolysin and also display anti-Legionella activity. It has been recently reported that S. aureus δ-hemolysin activity on vesicles is likewise related to phospholipid acyl-chain structure, such as chain length and saturation. As staphylococcal δ-hemolysins were highly similar, we thus hypothesized that fatty acid composition of Legionella's membrane might influence the sensitivity of the bacteria to warnericin RK. Relationship between sensitivity to the peptide and fatty acid composition was then followed in various conditions. Cells in stationary phase, which were already described as less resistant than cells in exponential phase, displayed higher amounts of branched-chain fatty acids (BCFA) and short chain fatty acids. An adapted strain, able to grow at a concentration 33 fold higher than minimal inhibitory concentration of the wild type (i.e. 1µM), was isolated after repeated transfers of L. pneumophila in the presence of increased concentrations of warnericin RK. The amount of BCFA was significantly higher in the adapted strain than in the wild type strain. Also, a transcriptomic analysis of the wild type and adapted strains showed that two genes involved in fatty acid biosynthesis were repressed in the adapted strain. These genes encode enzymes involved in desaturation and elongation of fatty acids respectively. Their repression was in agreement with the decrease of unsaturated fatty acids and fatty acid chain length in the adapted strain. Conclusively, our results indicate that the increase of BCFA and the decrease of fatty acid chain length in membrane were correlated with the increase in resistance to warnericin RK. Therefore, fatty acid profile seems to play a critical role in the sensitivity of L. pneumophila to warnericin RK.


Asunto(s)
Antibacterianos/farmacología , Bacteriocinas/farmacología , Membrana Celular/efectos de los fármacos , Ácidos Grasos/análisis , Legionella pneumophila/efectos de los fármacos , Proteínas Bacterianas/farmacología , Membrana Celular/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Legionella pneumophila/genética , Lípidos de la Membrana/química , Pruebas de Sensibilidad Microbiana , Análisis de Secuencia por Matrices de Oligonucleótidos , Staphylococcus/metabolismo
17.
Front Microbiol ; 13: 828359, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495704

RESUMEN

Altering the gut microbiota can negatively affect human health. Efforts may be sustained to predict the intended or unintended effects of molecules not naturally produced or expected to be present within the organism on the gut microbiota. Here, culture-dependent and DNA-based approaches were combined to UHPLC-MS/MS analyses in order to investigate the reciprocal interactions between a constructed Human Gut Microbiota Model (HGMM) and molecules including antibiotics, drugs, and xenobiotics. Our HGMM was composed of strains from the five phyla commonly described in human gut microbiota and belonging to Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, and Actinobacteria. Relevantly, the bacterial diversity was conserved in our constructed human gut model through subcultures. Uneven richness distribution was revealed and the sensitivity of the HGMM was mainly affected by antibiotic exposure rather than by drugs or xenobiotics. Interestingly, the constructed model and the individual cultured strains respond with the same sensitivity to the different molecules. UHPLC-MS/MS analyses revealed the disappearance of some native molecules in the supernatants of the HGMM as well as in those of the individual strains. These results suggest that biotransformation of molecules occurred in the presence of our gut microbiota model and the coupled approaches performed on the individual cultures may emphasize new bacterial strains active in these metabolic processes. From this study, the new HGMM appears as a simple, fast, stable, and inexpensive model for screening the reciprocal interactions between the intestinal microbiota and molecules of interest.

18.
Microorganisms ; 10(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36144390

RESUMEN

Phthalates are used in a variety of applications-for example, as plasticizers in polyvinylchloride products to improve their flexibility-and can be easily released into the environment. In addition to being major persistent organic environmental pollutants, some phthalates are responsible for the carcinogenicity, teratogenicity, and endocrine disruption that are notably affecting steroidogenesis in mammals. Numerous studies have thus focused on deciphering their effects on mammals and eukaryotic cells. While multicellular organisms such as humans are known to display various microbiota, including all of the microorganisms that may be commensal, symbiotic, or pathogenic, few studies have aimed at investigating the relationships between phthalates and bacteria, notably regarding their effects on opportunistic pathogens and the severity of the associated pathologies. Herein, the effects of phthalates and their substitutes were investigated on the human pathogen, Pseudomonas aeruginosa, in terms of physiology, virulence, susceptibility to antibiotics, and ability to form biofilms. We show in particular that most of these compounds increased biofilm formation, while some of them enhanced the bacterial membrane fluidity and altered the bacterial morphology.

19.
Traffic ; 10(6): 673-90, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19302420

RESUMEN

Stress within the endoplasmic reticulum (ER) induces a coordinated response, namely the unfolded protein response (UPR), devoted to helping the ER cope with the accumulation of misfolded proteins. Failure of the UPR plays an important role in several human diseases. Recent studies report that intracellular accumulation of saturated fatty acids (SFAs) and cholesterol, seen in diseases of high incidence, such as obesity or atherosclerosis, results in ER stress. In the present study, we evaluated the effects of perturbations to lipid homeostasis on ER stress/UPR induction in the model eukaryote Saccharomyces cerevisiae. We show that SFA originating from either endogenous(preclusion of fatty acid desaturation) or exogenous (feeding with extracellular SFA) sources trigger ER stress and that ergosterol, the major sterol in yeast, acts synergistically with SFA in this process. This latter effect is connected to ergosterol accumulation within microsomal fractions from SFA-accumulating cells, which display highly saturated phospholipid content. Moreover, treating the cells with the molecular chaperone 4-phenyl butyrate abolishes UPR induction, suggesting that lipid-induced ER stress leads to an overload of misfolded protein that acts, in turn, as the molecular signal for induction of the UPR. The present data are discussed in the context of human diseases that involve lipid deregulation.


Asunto(s)
Retículo Endoplásmico/metabolismo , Ácidos Grasos/metabolismo , Lípidos/fisiología , Esteroles/metabolismo , Humanos
20.
Appl Microbiol Biotechnol ; 89(3): 623-34, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20949268

RESUMEN

A peptide antibiotic, gramicidin A, was covalently bound to cystamine self-assembled monolayers on gold surfaces. Each step of the surface functionalization was characterized by polarization modulation infrared reflection absorption spectroscopy and X-ray photoelectron spectroscopy. The antimicrobial activity of the anchored gramicidin was tested against three Gram-positive bacteria (Listeria ivanovii, Enterococcus faecalis, and Staphylococcus aureus), the Gram-negative bacterium Escherichia coli and the yeast Candida albicans. The results revealed that the adsorbed gramicidin reduced, from 60% for E. coli to 90% for C. albicans, the number of culturable microorganisms attached to the surface. The activity was proven to be persistent overtime, up to 6 months after the first use. The bacteria attached to the functionalized surfaces were permeabilized as shown by confocal microscopy. Taken together, these results indicate a bacteriostatic mode of action of the immobilized peptide. Finally, using green fluorescent protein-expressing bacteria, it was shown that the development of a bacterial biofilm was delayed on peptide-grafted surfaces for at least 24 h.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Oro , Bacterias Grampositivas/efectos de los fármacos , Gramicidina/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda