Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Structure ; 7(2): 111-8, 1999 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-10368279

RESUMEN

BACKGROUND: Plasminogen activator inhibitor 1 (PAI-1) is a serpin that has a key role in the control of fibrinolysis through proteinase inhibition. PAI-1 also has a role in regulating cell adhesion processes relevant to tissue remodeling and metastasis; this role is mediated by its binding to the adhesive glycoprotein vitronectin rather than by proteinase inhibition. Active PAI-1 is metastable and spontaneously transforms to an inactive latent conformation. Previous attempts to crystallize the active conformation of PAI-1 have failed. RESULTS: The crystal structure of a stable quadruple mutant of PAI-1(Asn150-->His, Lys154-->Thr, Gln319-->Leu, Met354-->Ile) in its active conformation has been solved at a nominal 3 A resolution. In two of four independent molecules within the crystal, the flexible reactive center loop is unconstrained by crystal-packing contacts and is disordered. In the other two molecules, the reactive center loop forms intimate loop-sheet interactions with neighboring molecules, generating an infinite chain within the crystal. The overall conformation resembles that seen for other active inhibitory serpins. CONCLUSIONS: The structure clarifies the molecular basis of the stabilizing mutations and the reduced affinity of PAI-1, on cleavage or in the latent form, for vitronectin. The infinite chain of linked molecules also suggests a new mechanism for the serpin polymerization associated with certain diseases. The results support the concept that the reactive center loop of an active serpin is flexible and has no defined conformation in the absence of intermolecular contacts. The determination of the structure of the active form constitutes an essential step for the rational design of PAI-1 inhibitors.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Fibrinólisis/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/química , Conformación Proteica , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Mutación/genética , Inhibidor 1 de Activador Plasminogénico/genética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Inhibidores de Serina Proteinasa/química , Serpinas/química , Vitronectina/metabolismo
2.
Gene ; 200(1-2): 35-43, 1997 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-9373137

RESUMEN

We have previously shown that several protein kinases are present in higher activity levels in multidrug resistant cell lines, such as KB-V1. We have now isolated a gene that codes for a putative protein kinase, PKY, of over 130 kDa that is expressed at higher levels in multidrug-resistant cells. RNA from KB-V1 multidrug-resistant cells was reverse-transcribed and amplified by using primers derived from consensus regions of serine threonine kinases and amplified fragments were used to recover overlapping clones from a KB-V1 cDNA library. An open reading frame of 3648 bp of DNA sequence predicting 1215 aa, has been identified. This cDNA hybridizes to a mRNA of about 7 kb which is expressed at high levels in human heart and muscle tissue and overexpressed in drug-resistant KB-V1 and HL60/ADR cells. Because its closest homolog is the yeast serine/threonine kinase, Yak1, we have called this gene PKY. PKY is also related to the protein kinase family that includes Cdks, Gsk-3, and MAPK proline-directed protein kinases. This protein represents the first of its type known in mammals and may be involved in growth control pathways similar to those described for Yak1, as well as possibly playing a role in multidrug resistance.


Asunto(s)
Proteínas Portadoras , Resistencia a Múltiples Medicamentos/genética , Proteínas Quinasas/biosíntesis , Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/química , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Secuencia de Consenso , Drosophila/genética , Expresión Génica , Biblioteca de Genes , Células HL-60 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Células KB , Mamíferos , Datos de Secuencia Molecular , Especificidad de Órganos , Reacción en Cadena de la Polimerasa , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/biosíntesis , Ratas , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transcripción Genética , Células Tumorales Cultivadas
3.
Proc Natl Acad Sci U S A ; 88(17): 7768-72, 1991 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-1652763

RESUMEN

Transformed cells produce elevated levels of the urokinase-type plasminogen activator (u-PA), which has been linked with the invasive or migratory phenotype of these cells. The u-PA is secreted and normally maintained in the inactive, single-chain form (scu-PA) and it has been assumed that natural activation occurs via a plasmin-mediated cleavage converting scu-PA to the active, two-chain form (tcu-PA). We now demonstrate that secreted scu-PA in Rous sarcoma virus-transformed chicken embryo fibroblast (RSVCEF) cultures is activated by an endogenous, plasmin-independent mechanism. Normal CEFs and CEFs infected with a temperature-sensitive RSV mutant and incubated at the nonpermissive temperature do not activate scu-PA. Conditioned medium harvested from plasmin-free cultures of RSVCEFs contains active tcu-PA as determined by two independent methods. The scu-PA is progressively converted with time in culture and requires the presence of intact cells or a plasma membrane-enriched fraction. When added to RSVCEF cultures, a synthetic peptide corresponding to residues 20-41 of the growth factor domain of chicken u-PA blocks the conversion to tcu-PA, and scu-PA accumulates in the cultures. These results suggest that scu-PA is secreted by cells, becomes bound to a u-PA receptor, and is proteolytically converted to active tcu-PA by a catalytic mechanism on the surface of RSV-transformed fibroblasts.


Asunto(s)
Virus del Sarcoma Aviar/genética , Transformación Celular Neoplásica , Precursores Enzimáticos/metabolismo , Fibrinolisina/fisiología , Activadores Plasminogénicos/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Células Cultivadas , Embrión de Pollo , Activación Enzimática , Sueros Inmunes , Isoflurofato/farmacología , Cinética , Datos de Secuencia Molecular , Péptidos/síntesis química , Péptidos/aislamiento & purificación
4.
EMBO J ; 14(13): 2969-77, 1995 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-7621813

RESUMEN

Plasminogen activator inhibitor-1 (PAI-1) is a member of the serine protease inhibitor (serpin) supergene family and a central regulatory protein in the blood coagulation system. PAI-1 is unique among serpins in exhibiting distinct active and inactive (latent) conformations in vivo. Though the structure of latent PAI-1 was recently solved, the structure of the short-lived, active form of PAI-1 is not known. In order to probe the structural basis for this unique conformational change, a randomly mutated recombinant PAI-1 expression library was constructed in bacteriophage and screened for increased functional stability. Fourteen unique clones were selected, and shown to exhibit functional half-lives (T1/2S) exceeding that of wild-type PAI-1 by up to 72-fold. The most stable variant (T1/2 = 145 h) contained four mutations. Detailed analysis of these four mutations, individually and in combination, demonstrated that the markedly enhanced functional stability of the parent compound mutant required contributions from all four substitutions, with no individual T1/2 exceeding 6.6 h. The functional stability of at least eight of the remaining 13 compound mutants also required interactions between two or more amino acid substitutions, with no single variant increasing the T1/2 by > 10-fold. The nature of the identified mutations implies that the unique instability of the PAI-1 active conformation evolved through global changes in protein packing and suggest a selective advantage for transient inhibitor function.


Asunto(s)
Evolución Biológica , Inhibidor 1 de Activador Plasminogénico/química , Secuencia de Aminoácidos , Sitios de Unión/genética , Simulación por Computador , Activación Enzimática/genética , Estabilidad de Enzimas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Inhibidor 1 de Activador Plasminogénico/genética , Mutación Puntual , Conformación Proteica
5.
J Biol Chem ; 269(21): 15223-8, 1994 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-7515053

RESUMEN

Plasminogen activator inhibitor type 1 (PAI-1) is the rapid physiologic inhibitor of tissue-type plasminogen activator and urokinase-type plasminogen activator (uPA). In plasma and the extracellular matrix, PAI-1 is associated with the adhesive glycoprotein vitronectin. In order to characterize the PAI-1 structural domain responsible for binding to vitronectin, the segment of the PAI-1 cDNA encoding amino acids 13-147 (nucleotides 248-650) was randomly mutagenized and subcloned into a bacterial expression vector containing the mature PAI-1 coding sequence. Recombinant PAI-1 mutants were expressed in Escherichia coli and bacterial lysates assayed in duplicate for uPA inhibitory activity and vitronectin binding. Of 190 clones screened, six consistently demonstrated decreased vitronectin binding relative to uPA inhibitory activity. DNA sequence analysis of four of these clones identified 10 unique missense mutations, all located between base pairs 298 and 641, with each clone containing between one and four substitutions. Each substitution was expressed independently by site-directed mutagenesis and again analyzed for uPA inhibitory activity and vitronectin binding. Five point mutations that selectively disrupt vitronectin binding were identified. All 5 residues are located on the exterior of the PAI-1 structure. These findings appear to define a complex binding surface that bridges alpha-helices C and E to beta-strand 1A and includes amino acids 55, 109, 110, 116, and 123. These results suggest that vitronectin binding may stabilize the active conformation of PAI-1 by restricting the movement of beta-sheet A and thereby preventing insertion of the reactive center loop.


Asunto(s)
Glicoproteínas/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Clonación Molecular , ADN Complementario , Escherichia coli/genética , Datos de Secuencia Molecular , Mutagénesis , Inhibidor 1 de Activador Plasminogénico/química , Inhibidor 1 de Activador Plasminogénico/genética , Mutación Puntual , Conformación Proteica , Análisis de Secuencia de ADN , Vitronectina
6.
Cell Differ Dev ; 32(3): 263-75, 1990 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-1965954

RESUMEN

Cultures of transformed fibroblasts actively involved in extracellular matrix degradation have been examined for initial activation of serine and metallo protease cascade systems. Rous sarcoma virus transformed chick embryo fibroblasts (RSVCEF), in contrast to transformed mammalian cells, produce active, two chain urokinase-type plasminogen activator (tcu-PA). Active tcu-PA is found in serum-free, plasmin-free conditioned medium from RSVCEF cultures as determined by two independent methods, immunoprecipitation and differential DFP sensitivity. RSVCEF cultures synthesize and secrete inactive, single chain uPA (scu-PA) which is converted to tcu-PA in a time dependent manner by a catalytic mechanism that appears to involve a functioning uPA receptor on the surface of intact cells. The enzyme activity responsible for this conversion may represent the initiating catalytic event in the PA/plasminogen serine protease cascade system. A 70 kDa prometalloprotease capable of degrading denatured collagen following its activation also is significantly elevated in RSVCEF cultures over that of normal CEF. Trace amounts of the active 62 kDa form of the metalloprotease (gelatinase) is found in the transformed RSVCEF cultures indicating that these cultures produce a natural activator of the prometalloprotease. Plasmin and/or PA do not appear to be the activator of this enzyme as determined by indirect inhibition assays and direct assays employing purified enzymes. The possible central position of pro PA and the 70 kDa prometalloprotease in an interacting, complex protease cascade system involved in extracellular matrix degradation is discussed.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Metaloendopeptidasas/metabolismo , Proteínas de Neoplasias/metabolismo , Activadores Plasminogénicos/metabolismo , Proteínas/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Secuencia de Aminoácidos , Animales , Virus del Sarcoma Aviar , Línea Celular Transformada , Transformación Celular Viral , Embrión de Pollo , Activación Enzimática , Fibroblastos/enzimología , Gelatinasas , Mamíferos , Proteínas de la Membrana/metabolismo , Colagenasa Microbiana/metabolismo , Datos de Secuencia Molecular , Pepsina A/metabolismo , Especificidad de la Especie , Especificidad por Sustrato
7.
J Biol Chem ; 270(43): 25309-12, 1995 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-7592687

RESUMEN

The serine protease inhibitors of the serpin family are an unusual group of proteins thought to have metastable native structures. Functionally, they are unique among polypeptide protease inhibitors, although their precise mechanism of action remains controversial. Conflicting results from previous studies have suggested that the stable serpin-protease complex is trapped in either a tight Michaelis-like structure, a tetrahedral intermediate, or an acyl-enzyme. In this report we show that, upon association with a target protease, the serpin reactive-center loop (RCL) is cleaved resulting in formation of an acyl-enzyme intermediate. This cleavage is coupled to rapid movement of the RCL into the body of the protein bringing the inhibitor closer to its lowest free energy state. From these data we suggest a model for serpin action in which the drive toward the lowest free energy state results in trapping of the protease-inhibitor complex as an acyl-enzyme intermediate.


Asunto(s)
Inhibidor 1 de Activador Plasminogénico/metabolismo , Serina Endopeptidasas/metabolismo , Acilación , Sitios de Unión , Análisis de Inyección de Flujo , Fluorometría , Modelos Moleculares , Movimiento (Física) , Unión Proteica , Análisis de Secuencia , Succinimidas , Activador de Tejido Plasminógeno/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda