Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Mol Genet Metab ; 142(4): 108509, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38959600

RESUMEN

OBJECTIVE: Our report describes clinical, genetic, and biochemical features of participants with a molecularly confirmed congenital disorder of glycosylation (CDG) enrolled in the Frontiers in Congenital Disorders of Glycosylation (FCDGC) Natural History cohort at year 5 of the study. METHODS: We enrolled individuals with a known or suspected CDG into the FCDGC Natural History Study, a multicenter prospective and retrospective natural history study of all genetic causes of CDG. We conducted a cross-sectional analysis of baseline study visit data from participants with confirmed CDG who were consented into the FCDGC Natural History Study (5U54NS115198) from October 2019 to November 2023. RESULTS: Three hundred thirty-three subjects consented to the FCDGC Natural History Study. Of these, 280 unique individuals had genetic data available that was consistent with a diagnosis of CDG. These 280 individuals were enrolled into the study between October 8, 2019 and November 29, 2023. One hundred forty-one (50.4%) were female, and 139 (49.6%) were male. Mean and median age at enrollment was 10.1 and 6.5 years, respectively, with a range of 0.22 to 71.4 years. The cohort encompassed individuals with disorders of N-linked protein glycosylation (57%), glycosylphosphatidylinositol anchor disorder (GPI anchor) (15%), disorders of Golgi homeostasis, trafficking and transport (12%), dolichol metabolism disorders (5%), disorders of multiple pathways (6%), and other (5%). The most frequent presenting symptom(s) leading to diagnosis were developmental delay/disability (77%), followed by hypotonia (56%) and feeding difficulties (42%). Mean and median time between first related symptom and diagnosis was 2.7 and 0.8 years, respectively. One hundred percent of individuals in our cohort had developmental differences/disabilities at the time of their baseline visit, followed by 97% with neurologic involvement, 91% with gastrointestinal (GI)/liver involvement, and 88% with musculoskeletal involvement. Severity of disease in individuals was scored on the Nijmegen Progression CDG Rating Scale (NPCRS) with 27% of scores categorized as mild, 44% moderate, and 29% severe. Of the individuals with N-linked protein glycosylation defects, 83% of those with data showed a type 1 pattern on carbohydrate deficient transferrin (CDT) analysis including 82/84 individuals with PMM2-CDG, 6% a type 2 pattern, 1% both type 1 and type 2 pattern and 10% a normal or nonspecific pattern. One hundred percent of individuals with Golgi homeostasis and trafficking defects with data showed a type 2 pattern on CDT analysis, while Golgi transport defect showed a type II pattern 73% of the time, a type 1 pattern for 7%, and 20% had a normal or nonspecific pattern. Most of the variants documented were classified as pathogenic or likely pathogenic using ACMG criteria. For the majority of the variants, the predicted molecular consequence was missense followed by nonsense and splice site, and the majority of the diagnoses are inherited in an autosomal recessive pattern but with disorders of all major nuclear inheritance included. DISCUSSION: The FCDGC Natural History Study serves as an important resource to build future research studies, improve clinical care, and prepare for clinical trial readiness. Herein is the first overview of CDG participants of the FCDGC Natural History Study.

2.
Mol Genet Metab ; 140(3): 107693, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37716025

RESUMEN

Newborn screening (NBS) began a revolution in the management of biochemical genetic diseases, greatly increasing the number of patients for whom dietary therapy would be beneficial in preventing complications in phenylketonuria as well as in a few similar disorders. The advent of next generation sequencing and expansion of NBS have markedly increased the number of biochemical genetic diseases as well as the number of patients identified each year. With the avalanche of new and proposed therapies, a second wave of options for the treatment of biochemical genetic disorders has emerged. These therapies range from simple substrate reduction to enzyme replacement, and now ex vivo gene therapy with autologous cell transplantation. In some instances, it may be optimal to introduce nucleic acid therapy during the prenatal period to avoid fetopathy. However, as with any new therapy, complications may occur. It is important for physicians and other caregivers, along with ethicists, to determine what new therapies might be beneficial to the patient, and which therapies have to be avoided for those individuals who have less severe problems and for which standard treatments are available. The purpose of this review is to discuss the "Standard" treatment plans that have been in place for many years and to identify the newest and upcoming therapies, to assist the physician and other healthcare workers in making the right decisions regarding the initiation of both the "Standard" and new therapies. We have utilized several diseases to illustrate the applications of these different modalities and discussed for which disorders they may be suitable. The future is bright, but optimal care of the patient, including and especially the newborn infant, requires a deep knowledge of the disease process and careful consideration of the necessary treatment plan, not just based on the different genetic defects but also with regards to different variants within a gene itself.


Asunto(s)
Errores Innatos del Metabolismo , Fenilcetonurias , Recién Nacido , Lactante , Embarazo , Femenino , Humanos , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/terapia , Errores Innatos del Metabolismo/diagnóstico , Tamizaje Neonatal , Fenilcetonurias/genética , Fenilcetonurias/terapia , Biología Molecular , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Genet Med ; 24(4): 839-850, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35027292

RESUMEN

PURPOSE: This study aimed to evaluate genetic contributions to sudden unexpected death in pediatrics (SUDP). METHODS: We phenotyped and performed exome sequencing for 352 SUDP cases. We analyzed variants in 294 "SUDP genes" with mechanisms plausibly related to sudden death. In a subset of 73 cases with parental data (trios), we performed exome-wide analyses and conducted cohort-wide burden analyses. RESULTS: In total, we identified likely contributory variants in 37 of 352 probands (11%). Analysis of SUDP genes identified pathogenic/likely pathogenic variants in 12 of 352 cases (SCN1A, DEPDC5 [2], GABRG2, SCN5A [2], TTN [2], MYBPC3, PLN, TNNI3, and PDHA1) and variants of unknown significance-favor-pathogenic in 17 of 352 cases. Exome-wide analyses of the 73 cases with family data additionally identified 4 de novo pathogenic/likely pathogenic variants (SCN1A [2], ANKRD1, and BRPF1) and 4 de novo variants of unknown significance-favor-pathogenic. Comparing cases with controls, we demonstrated an excess burden of rare damaging SUDP gene variants (odds ratio, 2.94; 95% confidence interval, 2.37-4.21) and of exome-wide de novo variants in the subset of 73 with trio data (odds ratio, 3.13; 95% confidence interval, 1.91-5.16). CONCLUSION: We provide strong evidence for a role of genetic factors in SUDP, involving both candidate genes and novel genes for SUDP and expanding phenotypes of disease genes not previously associated with sudden death.


Asunto(s)
Muerte Súbita , Pediatría , Proteínas Adaptadoras Transductoras de Señales , Niño , Preescolar , Proteínas de Unión al ADN , Exoma/genética , Humanos , Lactante , Recién Nacido , Fenotipo , Secuenciación del Exoma
4.
Mol Genet Metab ; 137(1-2): 33-39, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35882174

RESUMEN

Despite many decades of research involving both human subjects and model systems, the underlying pathophysiology of long-term complications in classic galactosemia (CG) remains poorly understood. In this review, intended for those already familiar with galactosemia, we focus on the big questions relating to outcomes, mechanism, and markers, drawing on relevant literature where available, attempting to navigate inconsistencies where they appear, and acknowledging gaps in knowledge where they persist.


Asunto(s)
Galactosemias , Humanos , Galactosemias/complicaciones , Galactosemias/genética , Modelos Biológicos , UTP-Hexosa-1-Fosfato Uridililtransferasa
5.
J Inherit Metab Dis ; 45(6): 1106-1117, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36093991

RESUMEN

Patients with galactosemia who carry the S135L (c.404C > T) variant of galactose-1-P uridylyltransferase (GALT), documented to encode low-level residual GALT activity, have been under-represented in most prior studies of outcomes in Type 1 galactosemia. What is known about the acute and long-term outcomes of these patients, therefore, is based on very limited data. Here, we present a study comparing acute and long-term outcomes of 12 patients homozygous for S135L, 25 patients compound heterozygous for S135L, and 105 patients homozygous for two GALT-null (G) alleles. This is the largest cohort of S135L patients characterized to date. Acute disease following milk exposure in the newborn period was common among patients in all 3 comparison groups in our study, as were long-term complications in the domains of speech, cognition, and motor outcomes. In contrast, while at least 80% of both GALT-null and S135L compound heterozygous girls and women showed evidence of an adverse ovarian outcome, prevalence was only 25% among S135L homozygotes. Further, all young women in this study with even one copy of S135L achieved spontaneous menarche; this is true for only about 33% of women with classic galactosemia. Overall, we observed that while most long-term outcomes trended milder among groups of patients with even one copy of S135L, many individual patients, either homozygous or compound heterozygous for S135L, nonetheless experienced long-term outcomes that were not mild. This was true despite detection by newborn screening and both early and life-long dietary restriction of galactose. This information should empower more evidence-based counseling for galactosemia patients with S135L.


Asunto(s)
Galactosemias , Femenino , Humanos , Recién Nacido , Alelos , Galactosa , Galactosemias/genética , Galactosemias/diagnóstico , Homocigoto , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética
6.
Genet Med ; 23(1): 202-210, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32807972

RESUMEN

PURPOSE: Galactokinase (GALK1) deficiency is a rare hereditary galactose metabolism disorder. Beyond cataract, the phenotypic spectrum is questionable. Data from affected patients included in the Galactosemias Network registry were collected to better characterize the phenotype. METHODS: Observational study collecting medical data of 53 not previously reported GALK1 deficient patients from 17 centers in 11 countries from December 2014 to April 2020. RESULTS: Neonatal or childhood cataract was reported in 15 and 4 patients respectively. The occurrence of neonatal hypoglycemia and infection were comparable with the general population, whereas bleeding diathesis (8.1% versus 2.17-5.9%) and encephalopathy (3.9% versus 0.3%) were reported more often. Elevated transaminases were seen in 25.5%. Cognitive delay was reported in 5 patients. Urinary galactitol was elevated in all patients at diagnosis; five showed unexpected Gal-1-P increase. Most patients showed enzyme activities ≤1%. Eleven different genotypes were described, including six unpublished variants. The majority was homozygous for NM_000154.1:c.82C>A (p.Pro28Thr). Thirty-five patients were diagnosed following newborn screening, which was clearly beneficial. CONCLUSION: The phenotype of GALK1 deficiency may include neonatal elevation of transaminases, bleeding diathesis, and encephalopathy in addition to cataract. Potential complications beyond the neonatal period are not systematically surveyed and a better delineation is needed.


Asunto(s)
Catarata , Galactoquinasa/deficiencia , Galactosemias , Galactoquinasa/genética , Galactosemias/epidemiología , Galactosemias/genética , Homocigoto , Humanos , Recién Nacido , Sistema de Registros
7.
Mol Genet Metab ; 134(1-2): 132-138, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34391645

RESUMEN

Duarte galactosemia is not classic galactosemia, but rather an example of biochemical variant galactosemia that results in approximately 25% residual activity of galactose-1-phosphate uridylyltransferase (GALT) enzyme. In contrast, classic galactosemia is associated with complete or near complete absence of GALT activity. While infants with classic galactosemia are placed on galactose-restricted diets to prevent the acute and long-term manifestations of their metabolic disorder, while individuals with Duarte variant galactosemia (Duarte-2 galactosemia) do not require diet therapy. The long-term complications that are seen in classic galactosemia such as cerebellar ataxia, and hypergonadotropic hypogonadism do not occur in Duarte-2 galactosemia. While Duarte galactosemia does not appear to be a metabolic disease, it may have an impact on early neurodevelopmental outcomes. This study examined developmental outcomes and the need for special services in individuals with Duarte-2 galactosemia in comparison to individuals with classic galactosemia. We performed a medical record review of individuals with GALT deficiency who were evaluated at Boston Children's Hospital and enrolled in our study of outcomes in galactosemia. This included 95 participants, 21 with Duarte-2 galactosemia and 73 with classic galactosemia. Duarte-2 participants had developmental test scores within the average range. However, 42% of subjects with Duarte-2 galactosemia had participated in early intervention and/or special education and 32% received speech therapy. Their pattern of strengths and weaknesses in cognitive/language/motor domains was similar to that noted in participants with classic galactosemia, albeit to a milder degree. The data indicate that in children with Duarte-2 variant galactosemia, the cognitive/language and motor skills were within normal limits with their cognitive/language skills developing earlier than their motor skills during their first year of life. A history of diet treatment was not related to the use of special services. These results suggest that Duarte-2 galactosemia increases the risk for early mild developmental delays irrespective of treatment history, which resolves over time, and highlights the need to further assess neurodevelopment in early infancy, in Duarte-2 galactosemia. As Duarte-2 galactosemia is not a bona fide biochemical genetic disease, we hypothesize that elements in the genomic space that include the GALT gene are responsible for a transient delay in language-related motor skills during early infancy.


Asunto(s)
Alelos , Desarrollo Infantil , Galactosemias/clasificación , Galactosemias/genética , Variación Genética , Preescolar , Femenino , Galactosemias/fisiopatología , Genotipo , Humanos , Lactante , Masculino , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/genética , Fenotipo , Estudios Retrospectivos , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética
8.
Am J Med Genet A ; 185(1): 203-207, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33037779

RESUMEN

Inherited optic neuropathies (IONs) are neurodegenerative disorders characterized by optic atrophy with or without extraocular manifestations. Optic atrophy-10 (OPA10) is an autosomal recessive ION recently reported to be caused by mutations in RTN4IP1, which encodes reticulon 4 interacting protein 1 (RTN4IP1), a mitochondrial ubiquinol oxydo-reductase. Here we report novel compound heterozygous mutations in RTN4IP1 in a male proband with developmental delay, epilepsy, optic atrophy, ataxia, and choreoathetosis. Workup was notable for transiently elevated lactate and lactate-to-pyruvate ratio, brain magnetic resonance imaging with optic atrophy and T2 signal abnormalities, and a nondiagnostic initial genetic workup, including chromosomal microarray and mitochondrial panel testing. Exome sequencing identified a paternally inherited missense variant (c.263T>G, p.Val88Gly) predicted to be deleterious and a maternally inherited deletion encompassing RTN4IP1. To our knowledge, this is the first report of a non-single nucleotide pathogenic variant associated with OPA10. This case highlights the expanding phenotypic spectrum of OPA10, the association between "syndromic" cases and severe RTN4IP1 mutations, and the importance of nonbiased genetic testing, such as ES, to analyze multiple genes and variants types, in patients suspected of having genetic disease.


Asunto(s)
Proteínas Portadoras/genética , Discapacidades del Desarrollo/genética , Epilepsia/genética , Proteínas Mitocondriales/genética , Atrofia Óptica/genética , Ataxia/diagnóstico por imagen , Ataxia/genética , Ataxia/patología , Proteínas Portadoras/ultraestructura , Preescolar , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/patología , Epilepsia/diagnóstico por imagen , Epilepsia/patología , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Proteínas Mitocondriales/ultraestructura , Mutación/genética , Atrofia Óptica/diagnóstico por imagen , Atrofia Óptica/patología , Linaje , Conformación Proteica , Relación Estructura-Actividad , Secuenciación del Exoma
9.
Mol Genet Metab ; 131(1-2): 147-154, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32828637

RESUMEN

Inborn errors of metabolism (IEM) involving the non-oxidative pentose phosphate pathway (PPP) include the two relatively rare conditions, transketolase deficiency and transaldolase deficiency, both of which can be difficult to diagnosis given their non-specific clinical presentations. Current biochemical testing approaches require an index of suspicion to consider targeted urine polyol testing. To determine whether a broad-spectrum biochemical test could accurately identify a specific metabolic pattern defining IEMs of the non-oxidative PPP, we employed the use of clinical metabolomic profiling as an unbiased novel approach to diagnosis. Subjects with molecularly confirmed IEMs of the PPP were included in this study. Targeted quantitative analysis of polyols in urine and plasma samples was accomplished with chromatography and mass spectrometry. Semi-quantitative unbiased metabolomic analysis of urine and plasma samples was achieved by assessing small molecules via liquid chromatography and high-resolution mass spectrometry. Results from untargeted and targeted analyses were then compared and analyzed for diagnostic acuity. Two siblings with transketolase (TKT) deficiency and three unrelated individuals with transaldolase (TALDO) deficiency were identified for inclusion in the study. For both IEMs, targeted polyol testing and untargeted metabolomic testing on urine and/or plasma samples identified typical perturbations of the respective disorder. Additionally, untargeted metabolomic testing revealed elevations in other PPP metabolites not typically measured with targeted polyol testing, including ribonate, ribose, and erythronate for TKT deficiency and ribonate, erythronate, and sedoheptulose 7-phosphate in TALDO deficiency. Non-PPP alternations were also noted involving tryptophan, purine, and pyrimidine metabolism for both TKT and TALDO deficient patients. Targeted polyol testing and untargeted metabolomic testing methods were both able to identify specific biochemical patterns indicative of TKT and TALDO deficiency in both plasma and urine samples. In addition, untargeted metabolomics was able to identify novel biomarkers, thereby expanding the current knowledge of both conditions and providing further insight into potential underlying pathophysiological mechanisms. Furthermore, untargeted metabolomic testing offers the advantage of having a single effective biochemical screening test for identification of rare IEMs, like TKT and TALDO deficiencies, that may otherwise go undiagnosed due to their generally non-specific clinical presentations.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos/genética , Errores Innatos del Metabolismo/genética , Transaldolasa/deficiencia , Transaldolasa/genética , Transcetolasa/genética , Adulto , Biomarcadores/sangre , Errores Innatos del Metabolismo de los Carbohidratos/sangre , Errores Innatos del Metabolismo de los Carbohidratos/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/patología , Niño , Preescolar , Cromatografía Liquida , Femenino , Humanos , Lactante , Masculino , Espectrometría de Masas , Errores Innatos del Metabolismo/sangre , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Metabolómica , Vía de Pentosa Fosfato/genética , Transaldolasa/sangre , Transaldolasa/metabolismo , Transcetolasa/sangre , Transcetolasa/deficiencia , Adulto Joven
10.
Ann Neurol ; 86(1): 116-128, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31018246

RESUMEN

OBJECTIVE: Individuals with urea cycle disorders (UCDs) often present with intellectual and developmental disabilities. The major aim of this study was to evaluate the impact of diagnostic and therapeutic interventions on cognitive outcomes in UCDs. METHODS: This prospective, observational, multicenter study includes data from 503 individuals with UCDs who had comprehensive neurocognitive testing with a cumulative follow-up of 702 patient-years. RESULTS: The mean cognitive standard deviation score (cSDS) was lower in symptomatic than in asymptomatic (p < 0.001, t test) individuals with UCDs. Intellectual disability (intellectual quotient < 70, cSDS < -2.0) was associated with the respective subtype of UCD and early disease onset, whereas height of the initial peak plasma ammonium concentration was inversely associated with neurocognitive outcomes in mitochondrial (proximal) rather than cytosolic (distal) UCDs. In ornithine transcarbamylase and argininosuccinate synthetase 1 deficiencies, we did not find evidence that monoscavenger therapy with sodium or glycerol phenylbutyrate was superior to sodium benzoate in providing cognitive protection. Early liver transplantation appears to be beneficial for UCDs. It is noteworthy that individuals with argininosuccinate synthetase 1 and argininosuccinate lyase deficiencies identified by newborn screening had better neurocognitive outcomes than those diagnosed after the manifestation of first symptoms. INTERPRETATION: Cognitive function is related to interventional and non-interventional variables. Early detection by newborn screening and early liver transplantation appear to offer greater cognitive protection, but none of the currently used nitrogen scavengers was superior with regard to long-term neurocognitive outcome. Further confirmation could determine these variables as important clinical indicators of neuroprotection for individuals with UCDs. ANN NEUROL 2019.


Asunto(s)
Cognición/fisiología , Pruebas de Estado Mental y Demencia , Trastornos Innatos del Ciclo de la Urea/diagnóstico , Trastornos Innatos del Ciclo de la Urea/terapia , Adolescente , Adulto , Niño , Preescolar , Estudios Transversales , Femenino , Estudios de Seguimiento , Glicerol/análogos & derivados , Glicerol/farmacología , Glicerol/uso terapéutico , Humanos , Lactante , Recién Nacido , Trasplante de Hígado/métodos , Masculino , Tamizaje Neonatal/métodos , Fenilbutiratos/farmacología , Fenilbutiratos/uso terapéutico , Estudios Prospectivos , Trastornos Innatos del Ciclo de la Urea/psicología , Adulto Joven
11.
Am J Med Genet A ; 182(6): 1426-1437, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32275123

RESUMEN

Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is an autosomal dominant neurodevelopmental disorder caused by loss-of-function variants in NR2F1 and characterized by visual impairment, developmental delay, and intellectual disability. Here we report 18 new cases, provide additional clinical information for 9 previously reported individuals, and review an additional 27 published cases to present a total of 54 patients. Among these are 22 individuals with point mutations or in-frame deletions in the DNA-binding domain (DBD), and 32 individuals with other types of variants including whole-gene deletions, nonsense and frameshift variants, and point mutations outside the DBD. We corroborate previously described clinical characteristics including developmental delay, intellectual disability, autism spectrum disorder diagnoses/features thereof, cognitive/behavioral anomalies, hypotonia, feeding difficulties, abnormal brain MRI findings, and seizures. We also confirm a vision phenotype that includes optic nerve hypoplasia, optic atrophy, and cortical visual impairment. Additionally, we expand the vision phenotype to include alacrima and manifest latent nystagmus (fusional maldevelopment), and we broaden the behavioral phenotypic spectrum to include a love of music, an unusually good long-term memory, sleep difficulties, a high pain tolerance, and touch sensitivity. Furthermore, we provide additional evidence for genotype-phenotype correlations, specifically supporting a more severe phenotype associated with DBD variants.


Asunto(s)
Factor de Transcripción COUP I/genética , Discapacidad Intelectual/genética , Atrofias Ópticas Hereditarias/genética , Convulsiones/genética , Codón sin Sentido/genética , Proteínas de Unión al ADN , Femenino , Mutación del Sistema de Lectura/genética , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/fisiopatología , Masculino , Mutación/genética , Atrofias Ópticas Hereditarias/complicaciones , Atrofias Ópticas Hereditarias/fisiopatología , Mutación Puntual/genética , Convulsiones/complicaciones , Convulsiones/fisiopatología
12.
J Inherit Metab Dis ; 43(6): 1165-1172, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32713002

RESUMEN

Adult-onset noncirrhotic hyperammonemia (NCH) is poorly understood and has a high morbidity and mortality. To elucidate the etiology and management of NCH, we performed a retrospective analysis of 23 adults (median age 51) with NCH treated between 2014 and 2020 at two academic medical centers. Hyperammonemia was diagnosed in all cases during the evaluation of altered mental status, with 22% presenting with seizures. Peak ammonia levels were >200 µmol/L in 70% of cases. Defects in ammonia metabolism were assessed using urea cycle biochemical testing, germline genetic testing, and testing for urease-producing infectious agents. Ammonia metabolism defects in these cases appear attributable to four major sources: (a) infection with urease-producing organism (n = 5); (b) previously undiagnosed inborn errors of metabolism (IEMs) (n = 4); (c) clinical exposures causing acquired urea cycle dysfunction (n = 6); and (d) unexplained acquired urea cycle dysfunction (uaUCD) (n = 8), as evidenced by biochemical signatures of urea cycle dysfunction without a genetic or clinical exposure. Severe protein malnutrition appeared to be a reversible risk factor for uaUCD. Overall, 13% of our cohort died prior to resolution of hyperammonemia, 26% died after hyperammonemia resolution, 57% survived after having reversible neurological changes, and 4% survived with irreversible neurological changes. Renal replacement therapy for ammonia clearance was often utilized for patients with an ammonia level above 250 µmol/L and patients were frequently empirically treated with antibiotics targeting urea-splitting organisms. Our study demonstrates that acquired urea cycle dysfunction, IEMs and urease-producing infections are major sources of adult-onset NCH and highlights successful management strategies for adult-onset NCH.


Asunto(s)
Hiperamonemia/diagnóstico , Trastornos Innatos del Ciclo de la Urea/diagnóstico , Adulto , Edad de Inicio , Anciano , Amoníaco/sangre , Femenino , Humanos , Hiperamonemia/etiología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Convulsiones/complicaciones , Análisis de Supervivencia , Urea/metabolismo , Adulto Joven
13.
J Inherit Metab Dis ; 43(6): 1205-1218, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32592186

RESUMEN

Classic galactosemia (OMIM# 230400) is an autosomal recessive disorder due to galactose-1-phosphate uridyltransferase deficiency. Newborn screening and prompt treatment with a galactose-free diet prevent the severe consequences of galactosemia, but clinical outcomes remain suboptimal. Five men and five women with classic galactosemia (mean age = 27.2 ± 5.47 years) received comprehensive neurological and neuropsychological evaluations, electroencephalogram (EEG) and magnetic resonance imaging (MRI). MRI data from nine healthy controls (mean age = 30.22 ± 3.52 years) were used for comparison measures. Galactosemia subjects experienced impaired memory, language processing, visual-motor skills, and increased anxiety. Neurological examinations revealed tremor and dysarthria in six subjects. In addition, there was ataxia in three subjects and six subjects had abnormal gait. Mean full scale IQ was 80.4 ± 17.3. EEG evaluations revealed right-sided abnormalities in five subjects and bilateral abnormalities in one subject. Compared to age- and gender-matched controls, subjects with galactosemia had reduced volume in left cerebellum white matter, bilateral putamen, and left superior temporal sulcus. Galactosemia patients also had lower fractional anisotropy and higher radial diffusivity values in the dorsal and ventral language networks compared to the controls. Furthermore, there were significant correlations between neuropsychological test results and the T1 volume and diffusivity scalars. Our findings help to identify anatomic correlates to motor control, learning and memory, and language in subjects with galactosemia. The results from this preliminary assessment may provide insights into the pathophysiology of this inborn error of metabolism.


Asunto(s)
Mapeo Encefálico/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Galactosemias/patología , Neuritas/patología , Sustancia Blanca/patología , Adulto , Anisotropía , Estudios de Casos y Controles , Electroencefalografía , Femenino , Galactosemias/fisiopatología , Galactosemias/psicología , Humanos , Lenguaje , Masculino , Actividad Motora , Pruebas Neuropsicológicas , Sustancia Blanca/fisiopatología , Adulto Joven
14.
J Inherit Metab Dis ; 43(3): 392-408, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31808946

RESUMEN

Since the first description of galactosemia in 1908 and despite decades of research, the pathophysiology is complex and not yet fully elucidated. Galactosemia is an inborn error of carbohydrate metabolism caused by deficient activity of any of the galactose metabolising enzymes. The current standard of care, a galactose-restricted diet, fails to prevent long-term complications. Studies in cellular and animal models in the past decades have led to an enormous progress and advancement of knowledge. Summarising current evidence in the pathophysiology underlying hereditary galactosemia may contribute to the identification of treatment targets for alternative therapies that may successfully prevent long-term complications. A systematic review of cellular and animal studies reporting on disease complications (clinical signs and/or biochemical findings) and/or treatment targets in hereditary galactosemia was performed. PubMed/MEDLINE, EMBASE, and Web of Science were searched, 46 original articles were included. Results revealed that Gal-1-P is not the sole pathophysiological agent responsible for the phenotype observed in galactosemia. Other currently described contributing factors include accumulation of galactose metabolites, uridine diphosphate (UDP)-hexose alterations and subsequent impaired glycosylation, endoplasmic reticulum (ER) stress, altered signalling pathways, and oxidative stress. galactokinase (GALK) inhibitors, UDP-glucose pyrophosphorylase (UGP) up-regulation, uridine supplementation, ER stress reducers, antioxidants and pharmacological chaperones have been studied, showing rescue of biochemical and/or clinical symptoms in galactosemia. Promising co-adjuvant therapies include antioxidant therapy and UGP up-regulation. This systematic review provides an overview of the scattered information resulting from animal and cellular studies performed in the past decades, summarising the complex pathophysiological mechanisms underlying hereditary galactosemia and providing insights on potential treatment targets.


Asunto(s)
Galactosemias/genética , Galactosemias/fisiopatología , Animales , Modelos Animales de Enfermedad , Galactoquinasa/genética , Galactoquinasa/metabolismo , Galactosa/metabolismo , Galactosemias/metabolismo , Galactosemias/terapia , Genotipo , Humanos , Estrés Oxidativo , Fenotipo , UDPglucosa 4-Epimerasa/genética , UDPglucosa 4-Epimerasa/metabolismo , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo
15.
J Inherit Metab Dis ; 43(4): 880-890, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32064623

RESUMEN

Congenital disorders of glycosylation (CDGs) are clinically heterogeneous disorders defined by a decreased ability to modify biomolecules with oligosaccharides. Critical disruptions in protein recognition, interaction, binding, and anchoring lead to broad physiological effects. Patients present with endocrinopathy, immunodeficiency, hepatopathy, coagulopathy, and neurodevelopmental impairment. Patients may experience mortality/morbidity associated with shock physiology that is frequently culture negative and poorly responsive to standard care. Oedema, pleural and pericardial effusions, ascites, proteinuria, and protein-losing enteropathy are observed with an exaggerated inflammatory response. The negative serum protein steady state results from several mechanisms including reduced hepatic synthesis and secretion, increased consumption, and extravasation. Disruption of the glycocalyx, a layer of glycosylated proteins that lines the endothelium preventing thrombosis and extravasation, is a suspected cause of endothelial dysfunction in CDG patients. We performed a retrospective review of CDG patients admitted to our institution with acute illness over the past 2 years. Longitudinal clinical and laboratory data collected during the sick and well states were assessed for biomarkers of inflammation and efficacy of interventions. Six patients representing 4 CDG subtypes and 14 hospitalisations were identified. Acute D-dimer elevation, proteinuria, decreased serum total protein levels, coagulation proteins, and albumin were observed with acute illness. Infusion of fresh frozen plasma, and in some cases protein C concentrate, was associated with clinical and biomarker improvement. This was notable with intra-patient comparison of treated vs untreated courses. Use of endothelial barrier support therapy may reduce endothelial permeability by restoring both regulatory serum protein homeostasis and supporting the glycocalyx and is likely a critical component of care for this population.


Asunto(s)
Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/terapia , Células Endoteliales/metabolismo , Glicocálix/metabolismo , Trombosis/prevención & control , Biomarcadores/metabolismo , Permeabilidad Capilar/fisiología , Niño , Preescolar , Endotelio Vascular/metabolismo , Femenino , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Humanos , Lactante , Masculino , Plasma , Estudios Retrospectivos
16.
Proc Natl Acad Sci U S A ; 114(29): 7695-7700, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28674018

RESUMEN

Sudden infant death syndrome (SIDS), the leading cause of postneonatal infant mortality, likely comprises heterogeneous disorders with the common phenotype of sudden death without explanation upon postmortem investigation. Previously, we reported that ∼40% of SIDS deaths are associated with abnormalities in serotonin (5-hydroxytryptamine, 5-HT) in regions of the brainstem critical in homeostatic regulation. Here we tested the hypothesis that SIDS is associated with an alteration in serum 5-HT levels. Serum 5-HT, adjusted for postconceptional age, was significantly elevated (95%) in SIDS infants (n = 61) compared with autopsied controls (n = 15) [SIDS, 177.2 ± 15.1 (mean ± SE) ng/mL versus controls, 91.1 ± 30.6 ng/mL] (P = 0.014), as determined by ELISA. This increase was validated using high-performance liquid chromatography. Thirty-one percent (19/61) of SIDS cases had 5-HT levels greater than 2 SDs above the mean of the controls, thus defining a subset of SIDS cases with elevated 5-HT. There was no association between genotypes of the serotonin transporter promoter region polymorphism and serum 5-HT level. This study demonstrates that SIDS is associated with peripheral abnormalities in the 5-HT pathway. High serum 5-HT may serve as a potential forensic biomarker in autopsied infants with SIDS with serotonergic defects.


Asunto(s)
Asfixia/sangre , Biomarcadores/sangre , Serotonina/sangre , Muerte Súbita del Lactante/sangre , Adulto , Autopsia , Tronco Encefálico/metabolismo , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión , Estudios de Cohortes , Femenino , Genotipo , Humanos , Ácido Hidroxiindolacético/sangre , Lactante , Masculino , Polimorfismo Genético , Factores de Riesgo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
17.
Mol Genet Metab ; 126(4): 368-376, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718057

RESUMEN

BACKGROUND: GALT deficiency is a rare genetic disorder of carbohydrate metabolism. Due to the decreased activity or absence of the enzyme galactose-1-phosphate uridylyltransferase (GALT), cells from affected individuals are unable to metabolize galactose normally. Lactose consumption in the newborn period could potentially lead to a lethal disease process with multi-organ involvement. In contrast to the newborn-stage disease, however, a galactose-restricted diet does not prevent long-term complications such as central nervous system (CNS) dysfunction with speech defects, learning disability and neurological disease in addition to hypergonadotropic hypogonadism or primary ovarian insufficiency (POI) in females. As the literature suggests an association between GALT enzyme activity and the long-term complications, it is of importance to have a highly sensitive assay to quantify the GALT enzyme activity. To that end, we had developed a sensitive and accurate LC-MS/MS method to measure GALT enzyme activity. Its ability to predict outcome is the subject of this report. MATERIALS AND METHODS: The GALT enzyme activity in erythrocytes from 160 individuals, in which 135 with classic, clinical variant or biochemical variant galactosemia, was quantified by LC-MS/MS. Individuals with GALT deficiency were evaluated for the long-term complications of speech defects, dysarthria, ataxia, dystonia, tremor, POI, as well as intellectual functioning (full scale IQ). The LC-MS/MS results were compared to a variety of assays: radioactive, [14C]-galactose-1-phosphate, paper chromatography with scintillation counting, enzyme-coupled assays with spectrophotometric or fluorometric readout or high-pressure liquid chromatography with UV detection of UDP-galactose. RESULTS: The LC-MS/MS method measured GALT activity as low as 0.2%, whereas other methods showed no detectable activity. Largely due to GALT activities that were over 1%, the LC-MS/MS measurements were not significantly different than values obtained in other laboratories using other methodologies. Severe long-term complications were less frequently noted in subjects with >1% activity. Patients with a p.Q188R/p.Q188R genotype have no residual enzyme activity in erythrocytes. CONCLUSION: Our LC-MS/MS assay may be necessary to accurately quantify residual GALT activities below 5%. The data suggest that patients with >1% residual activity are less likely to develop diet-independent long-term complications. However, much larger sample sizes are needed to properly assess the clinical phenotype in patients with residual enzyme activities between 0.1 and 5%.


Asunto(s)
Eritrocitos/enzimología , Galactosemias/diagnóstico , UTP-Hexosa-1-Fosfato Uridililtransferasa/sangre , Adolescente , Adulto , Anciano , Niño , Preescolar , Pruebas de Enzimas , Femenino , Galactosa/metabolismo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Retrospectivos , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem , Adulto Joven
18.
Ann Neurol ; 84(5): 766-780, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30295347

RESUMEN

OBJECTIVE: Several small case series identified KCTD7 mutations in patients with a rare autosomal recessive disorder designated progressive myoclonic epilepsy (EPM3) and neuronal ceroid lipofuscinosis (CLN14). Despite the name KCTD (potassium channel tetramerization domain), KCTD protein family members lack predicted channel domains. We sought to translate insight gained from yeast studies to uncover disease mechanisms associated with deficiencies in KCTD7 of unknown function. METHODS: Novel KCTD7 variants in new and published patients were assessed for disease causality using genetic analyses, cell-based functional assays of patient fibroblasts and knockout yeast, and electron microscopy of patient samples. RESULTS: Patients with KCTD7 mutations can exhibit movement disorders or developmental regression before seizure onset, and are distinguished from similar disorders by an earlier age of onset. Although most published KCTD7 patient variants were excluded from a genome sequence database of normal human variations, most newly identified patient variants are present in this database, potentially challenging disease causality. However, genetic analysis and impaired biochemical interactions with cullin 3 support a causal role for patient KCTD7 variants, suggesting deleterious alleles of KCTD7 and other rare disease variants may be underestimated. Both patient-derived fibroblasts and yeast lacking Whi2 with sequence similarity to KCTD7 have impaired autophagy consistent with brain pathology. INTERPRETATION: Biallelic KCTD7 mutations define a neurodegenerative disorder with lipofuscin and lipid droplet accumulation but without defining features of neuronal ceroid lipofuscinosis or lysosomal storage disorders. KCTD7 deficiency appears to cause an underlying autophagy-lysosome defect conserved in yeast, thereby assigning a biological role for KCTD7. Ann Neurol 2018;84:774-788.


Asunto(s)
Autofagia/genética , Lisosomas/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Canales de Potasio/deficiencia , Edad de Inicio , Preescolar , Femenino , Humanos , Lactante , Lisosomas/patología , Masculino , Mutación , Linaje , Canales de Potasio/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
J Inherit Metab Dis ; 42(1): 169-177, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30740733

RESUMEN

Long-chain fatty acid oxidation disorders (LC-FAOD) are rare disorders characterized by acute crises of energy metabolism and severe energy deficiency that may present with cardiomyopathy, hypoglycemia, and/or rhabdomyolysis, which can lead to frequent hospitalizations and early death. An open-label Phase 2 study evaluated the efficacy of UX007, an investigational odd-carbon medium-chain triglyceride, in 29 subjects with severe LC-FAOD. UX007 was administered over 78 weeks at a target dose of 25-35% total daily caloric intake (mean 27.5%). The frequency and duration of major clinical events (hospitalizations, emergency room visits, and emergency home interventions due to rhabdomyolysis, hypoglycemia, and cardiomyopathy) occurring during 78 weeks of UX007 treatment was compared with the frequency and duration of events captured retrospectively from medical records for 78 weeks before UX007 initiation. The mean annualized event rates decreased from 1.69 to 0.88 events/year following UX007 initiation (p = 0.021; 48.1% reduction). The mean annualized duration rate decreased from 5.96 to 2.96 days/year (p = 0.028; 50.3% reduction). Hospitalizations due to rhabdomyolysis, the most common event, decreased from 1.03 to 0.63 events/year (p = 0.104; 38.7% reduction). Initiation of UX007 eliminated hypoglycemia events leading to hospitalization (from 11 pre-UX007 hospitalizations, 0.30 events/year vs. 0; p = 0.067) and intensive care unit (ICU) care (from 2 pre-UX007 ICU admissions, 0.05 events/year vs. 0; p = 0.161) and reduced cardiomyopathy events (3 events vs. 1 event; 0.07 to 0.02 events/year; 69.7% decrease). The majority of treatment-related adverse events (AEs) were mild to moderate gastrointestinal symptoms, including diarrhea, vomiting, and abdominal or gastrointestinal pain, which can be managed with smaller, frequent doses mixed with food.


Asunto(s)
Ácidos Grasos/metabolismo , Errores Innatos del Metabolismo Lipídico/tratamiento farmacológico , Oxidación-Reducción/efectos de los fármacos , Triglicéridos/administración & dosificación , Adolescente , Adulto , Cardiomiopatías/metabolismo , Niño , Preescolar , Femenino , Humanos , Hipoglucemia/metabolismo , Lactante , Recién Nacido , Errores Innatos del Metabolismo Lipídico/metabolismo , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Rabdomiólisis/metabolismo , Adulto Joven
20.
Mol Genet Metab ; 125(1-2): 118-126, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30031689

RESUMEN

Folate metabolism in the brain is critically important and serves a number of vital roles in nucleotide synthesis, single carbon metabolism/methylation, amino acid metabolism, and mitochondrial translation. Genetic defects in almost every enzyme of folate metabolism have been reported to date, and most have neurological sequelae. We report 2 patients presenting with a neurometabolic disorder associated with biallelic variants in the MTHFS gene, encoding 5,10-methenyltetrahydrofolate synthetase. Both patients presented with microcephaly, short stature, severe global developmental delay, progressive spasticity, epilepsy, and cerebral hypomyelination. Baseline CSF 5-methyltetrahydrolate (5-MTHF) levels were in the low-normal range. The first patient was treated with folinic acid, which resulted in worsening cerebral folate deficiency. Treatment in this patient with a combination of oral L-5-methyltetrahydrofolate and intramuscular methylcobalamin was able to increase CSF 5-MTHF levels, was well tolerated over a 4 month period, and resulted in subjective mild improvements in functioning. Measurement of MTHFS enzyme activity in fibroblasts confirmed reduced activity. The direct substrate of the MTHFS reaction, 5-formyl-THF, was elevated 30-fold in patient fibroblasts compared to control, supporting the hypothesis that the pathophysiology of this disorder is a manifestation of toxicity from this metabolite.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Antiportadores/deficiencia , Ligasas de Carbono-Nitrógeno/genética , Epilepsia/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Microcefalia/genética , Enfermedades Mitocondriales/genética , Trastornos Psicomotores/genética , Sistemas de Transporte de Aminoácidos Acídicos/líquido cefalorraquídeo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiportadores/líquido cefalorraquídeo , Antiportadores/genética , Antiportadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Ligasas de Carbono-Nitrógeno/líquido cefalorraquídeo , Ligasas de Carbono-Nitrógeno/deficiencia , Ligasas de Carbono-Nitrógeno/metabolismo , Epilepsia/líquido cefalorraquídeo , Epilepsia/complicaciones , Epilepsia/patología , Femenino , Receptor 1 de Folato/deficiencia , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/líquido cefalorraquídeo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/complicaciones , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Humanos , Masculino , Enfermedades Metabólicas/líquido cefalorraquídeo , Enfermedades Metabólicas/complicaciones , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/patología , Microcefalia/líquido cefalorraquídeo , Microcefalia/complicaciones , Microcefalia/patología , Enfermedades Mitocondriales/líquido cefalorraquídeo , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/metabolismo , Malformaciones del Sistema Nervioso/líquido cefalorraquídeo , Malformaciones del Sistema Nervioso/complicaciones , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/metabolismo , Distrofias Neuroaxonales , Trastornos Psicomotores/líquido cefalorraquídeo , Trastornos Psicomotores/complicaciones , Trastornos Psicomotores/metabolismo , Tetrahidrofolatos/líquido cefalorraquídeo , Tetrahidrofolatos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda