Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nature ; 565(7738): 213-217, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626943

RESUMEN

Metal-organic frameworks (MOFs) are crystalline synthetic porous materials formed by binding organic linkers to metal nodes: they can be either rigid1,2 or flexible3. Zeolites and rigid MOFs have widespread applications in sorption, separation and catalysis that arise from their ability to control the arrangement and chemistry of guest molecules in their pores via the shape and functionality of their internal surface, defined by their chemistry and structure4,5. Their structures correspond to an energy landscape with a single, albeit highly functional, energy minimum. By contrast, proteins function by navigating between multiple metastable structures using bond rotations of the polypeptide6,7, where each structure lies in one of the minima of a conformational energy landscape and can be selected according to the chemistry of the molecules that interact with the protein. These structural changes are realized through the mechanisms of conformational selection (where a higher-energy minimum characteristic of the protein is stabilized by small-molecule binding) and induced fit (where a small molecule imposes a structure on the protein that is not a minimum in the absence of that molecule)8. Here we show that rotation about covalent bonds in a peptide linker can change a flexible MOF to afford nine distinct crystal structures, revealing a conformational energy landscape that is characterized by multiple structural minima. The uptake of small-molecule guests by the MOF can be chemically triggered by inducing peptide conformational change. This change transforms the material from a minimum on the landscape that is inactive for guest sorption to an active one. Chemical control of the conformation of a flexible organic linker offers a route to modifying the pore geometry and internal surface chemistry and thus the function of open-framework materials.

2.
Angew Chem Int Ed Engl ; 63(18): e202400188, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38445547

RESUMEN

The first systematic exploration of the synthesis and reactivity of naphthoquinonynes is described. Routes to two regioisomeric Kobayashi-type naphthoquinonyne precursors have been developed, and the reactivity of the ensuing 6,7- and 5,6-aryne intermediates has been investigated. Remarkably, these studies have revealed that a broad range of cycloadditions, nucleophile additions and difunctionalizations can be achieved while maintaining the integrity of the highly sensitive quinone unit. The methodologies offer a powerful diversity oriented approach to C6 and C7 functionalized naphthoquinones, which are typically challenging to access. From a reactivity viewpoint, the study is significant because it demonstrates that aryne-based functionalizations can be utilized strategically in the presence of highly reactive and directly competing functionality.

3.
Proc Natl Acad Sci U S A ; 116(4): 1414-1419, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30617067

RESUMEN

Onchocerciasis and lymphatic filariasis are two neglected tropical diseases that together affect ∼157 million people and inflict severe disability. Both diseases are caused by parasitic filarial nematodes with elimination efforts constrained by the lack of a safe drug that can kill the adult filaria (macrofilaricide). Previous proof-of-concept human trials have demonstrated that depleting >90% of the essential nematode endosymbiont bacterium, Wolbachia, using antibiotics, can lead to permanent sterilization of adult female parasites and a safe macrofilaricidal outcome. AWZ1066S is a highly specific anti-Wolbachia candidate selected through a lead optimization program focused on balancing efficacy, safety and drug metabolism/pharmacokinetic (DMPK) features of a thienopyrimidine/quinazoline scaffold derived from phenotypic screening. AWZ1066S shows superior efficacy to existing anti-Wolbachia therapies in validated preclinical models of infection and has DMPK characteristics that are compatible with a short therapeutic regimen of 7 days or less. This candidate molecule is well-positioned for onward development and has the potential to make a significant impact on communities affected by filariasis.


Asunto(s)
Antibacterianos/farmacología , Wolbachia/efectos de los fármacos , Animales , Filariasis Linfática/tratamiento farmacológico , Filariasis Linfática/microbiología , Femenino , Masculino , Ratones , Ratones SCID , Oncocercosis/tratamiento farmacológico , Oncocercosis/microbiología , Pirimidinas/farmacología , Quinazolinas/farmacología
4.
Angew Chem Int Ed Engl ; 61(9): e202114573, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-34878706

RESUMEN

The choice of metal and linker together define the structure and therefore the guest accessibility of a metal-organic framework (MOF), but the large number of possible metal-linker combinations makes the selection of components for synthesis challenging. We predict the guest accessibility of a MOF with 80.5 % certainty based solely on the identity of these two components as chosen by the experimentalist, by decomposing reported experimental three-dimensional MOF structures in the Cambridge Structural Database into metal and linker and then learning the connection between the components' chemistry and the MOF porosity. Pore dimensions of the guest-accessible space are classified into four ranges with three sequential models. Both the dataset and the predictive models are available to download and offer simple guidance in prioritization of the choice of the components for exploratory MOF synthesis for separation and catalysis based on guest accessibility considerations.

5.
J Am Chem Soc ; 142(35): 14903-14913, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32786807

RESUMEN

Flexible metal-organic frameworks (MOFs) undergo structural transformations in response to physical and chemical stimuli. This is hard to control because of feedback between guest uptake and host structure change. We report a family of flexible MOFs based on derivatized amino acid linkers. Their porosity consists of a one-dimensional channel connected to three peripheral pockets. This network structure amplifies small local changes in linker conformation, which are strongly coupled to the guest packing in and the shape of the peripheral pockets, to afford large changes in the global pore geometry that can, for example, segment the pore into four isolated components. The synergy among pore volume, guest packing, and linker conformation that characterizes this family of structures can be determined by the amino acid side chain, because it is repositioned by linker torsion. The resulting control optimizes noncovalent interactions to differentiate the uptake and structure response of host-guest pairs with similar chemistries.

6.
Biochem J ; 475(15): 2435-2455, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-29934490

RESUMEN

Protein tyrosine sulfation is a post-translational modification best known for regulating extracellular protein-protein interactions. Tyrosine sulfation is catalysed by two Golgi-resident enzymes termed tyrosylprotein sulfotransferases (TPSTs) 1 and 2, which transfer sulfate from the cofactor PAPS (3'-phosphoadenosine 5'-phosphosulfate) to a context-dependent tyrosine in a protein substrate. A lack of quantitative tyrosine sulfation assays has hampered the development of chemical biology approaches for the identification of small-molecule inhibitors of tyrosine sulfation. In the present paper, we describe the development of a non-radioactive mobility-based enzymatic assay for TPST1 and TPST2, through which the tyrosine sulfation of synthetic fluorescent peptides can be rapidly quantified. We exploit ligand binding and inhibitor screens to uncover a susceptibility of TPST1 and TPST2 to different classes of small molecules, including the anti-angiogenic compound suramin and the kinase inhibitor rottlerin. By screening the Published Kinase Inhibitor Set, we identified oxindole-based inhibitors of the Ser/Thr kinase RAF (rapidly accelerated fibrosarcoma) as low-micromolar inhibitors of TPST1 and TPST2. Interestingly, unrelated RAF inhibitors, exemplified by the dual BRAF/VEGFR2 inhibitor RAF265, were also TPST inhibitors in vitro We propose that target-validated protein kinase inhibitors could be repurposed, or redesigned, as more-specific TPST inhibitors to help evaluate the sulfotyrosyl proteome. Finally, we speculate that mechanistic inhibition of cellular tyrosine sulfation might be relevant to some of the phenotypes observed in cells exposed to anionic TPST ligands and RAF protein kinase inhibitors.


Asunto(s)
Imidazoles/química , Proteínas de la Membrana , Péptidos/química , Proteínas Proto-Oncogénicas B-raf , Piridinas/química , Sulfotransferasas , Tirosina/química , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/química , Sulfotransferasas/antagonistas & inhibidores , Sulfotransferasas/química
7.
Biochem J ; 475(15): 2417-2433, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-29934491

RESUMEN

Sulfation of carbohydrate residues occurs on a variety of glycans destined for secretion, and this modification is essential for efficient matrix-based signal transduction. Heparan sulfate (HS) glycosaminoglycans control physiological functions ranging from blood coagulation to cell proliferation. HS biosynthesis involves membrane-bound Golgi sulfotransferases, including HS 2-O-sulfotransferase (HS2ST), which transfers sulfate from the cofactor PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the 2-O position of α-l-iduronate in the maturing polysaccharide chain. The current lack of simple non-radioactive enzyme assays that can be used to quantify the levels of carbohydrate sulfation hampers kinetic analysis of this process and the discovery of HS2ST inhibitors. In the present paper, we describe a new procedure for thermal shift analysis of purified HS2ST. Using this approach, we quantify HS2ST-catalysed oligosaccharide sulfation using a novel synthetic fluorescent substrate and screen the Published Kinase Inhibitor Set, to evaluate compounds that inhibit catalysis. We report the susceptibility of HS2ST to a variety of cell-permeable compounds in vitro, including polyanionic polar molecules, the protein kinase inhibitor rottlerin and oxindole-based RAF kinase inhibitors. In a related study, published back-to-back with the present study, we demonstrated that tyrosyl protein sulfotranferases are also inhibited by a variety of protein kinase inhibitors. We propose that appropriately validated small-molecule compounds could become new tools for rapid inhibition of glycan (and protein) sulfation in cells, and that protein kinase inhibitors might be repurposed or redesigned for the specific inhibition of HS2ST.


Asunto(s)
Proteínas Aviares/química , Heparitina Sulfato/química , Oligosacáridos/química , Inhibidores de Proteínas Quinasas/química , Sulfotransferasas/química , Quinasas raf/antagonistas & inhibidores , Animales , Proteínas Aviares/genética , Pollos , Heparitina Sulfato/farmacología , Humanos , Oligosacáridos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Sulfotransferasas/genética , Porcinos , Quinasas raf/química
8.
Neurobiol Dis ; 118: 40-54, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29940336

RESUMEN

The antiepileptic drug ethosuximide has recently been shown to be neuroprotective in various Caenorhabditis elegans and rodent neurodegeneration models. It is therefore a promising repurposing candidate for the treatment of multiple neurodegenerative diseases. However, high concentrations of the drug are required for its protective effects in animal models, which may impact on its translational potential and impede the identification of its molecular mechanism of action. Therefore, we set out to develop more potent neuroprotective lead compounds based on ethosuximide as a starting scaffold. Chemoinformatic approaches were used to identify compounds with structural similarity to ethosuximide and to prioritise these based on good predicated blood-brain barrier permeability and C. elegans bioaccumulation properties. Selected compounds were initially screened for anti-convulsant activity in a C. elegans pentylenetetrazol-induced seizure assay, as a rapid primary readout of bioactivity; and then assessed for neuroprotective properties in a C. elegans TDP-43 proteinopathy model based on pan-neuronal expression of human A315T mutant TDP-43. The most potent compound screened, α-methyl-α-phenylsuccinimide (MPS), ameliorated the locomotion defects and extended the shortened lifespan of TDP-43 mutant worms. MPS also directly protected against neurodegeneration by reducing the number of neuronal breaks and cell body losses in GFP-labelled GABAergic motor neurons. Importantly, optimal neuroprotection was exhibited by external application of 50 µM MPS, compared to 8 mM for ethosuximide. This greater potency of MPS was not due to bioaccumulation to higher internal levels within the worm, based on 1H-nuclear magnetic resonance analysis. Like ethosuximide, the activity of MPS was abolished by mutation of the evolutionarily conserved FOXO transcription factor, daf-16, suggesting that both compounds act via the same neuroprotective pathway(s). In conclusion, we have revealed a novel neuroprotective activity of MPS that is >100-fold more potent than ethosuximide. This increased potency will facilitate future biochemical studies to identify the direct molecular target(s) of both compounds, as we have shown here that they share a common downstream DAF-16-dependent mechanism of action. Furthermore, MPS is the active metabolite of another approved antiepileptic drug, methsuximide. Therefore, methsuximide may have repurposing potential for treatment of TDP-43 proteinopathies and possibly other human neurodegenerative diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Succinimidas/uso terapéutico , Proteinopatías TDP-43/tratamiento farmacológico , Proteinopatías TDP-43/genética , Animales , Animales Modificados Genéticamente , Anticonvulsivantes/química , Anticonvulsivantes/uso terapéutico , Caenorhabditis elegans , Femenino , Masculino , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Succinimidas/química , Proteinopatías TDP-43/patología
9.
Proc Natl Acad Sci U S A ; 112(3): 755-60, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25564664

RESUMEN

Cytochrome bc1 is a proven drug target in the prevention and treatment of malaria. The rise in drug-resistant strains of Plasmodium falciparum, the organism responsible for malaria, has generated a global effort in designing new classes of drugs. Much of the design/redesign work on overcoming this resistance has been focused on compounds that are presumed to bind the Q(o) site (one of two potential binding sites within cytochrome bc1 using the known crystal structure of this large membrane-bound macromolecular complex via in silico modeling. Cocrystallization of the cytochrome bc1 complex with the 4(1H)-pyridone class of inhibitors, GSK932121 and GW844520, that have been shown to be potent antimalarial agents in vivo, revealed that these inhibitors do not bind at the Q(o) site but bind at the Q(i )site. The discovery that these compounds bind at the Q(i) site may provide a molecular explanation for the cardiotoxicity and eventual failure of GSK932121 in phase-1 clinical trial and highlight the need for direct experimental observation of a compound bound to a target site before chemical optimization and development for clinical trials. The binding of the 4(1H)-pyridone class of inhibitors to Q(i) also explains the ability of this class to overcome parasite Q(o)-based atovaquone resistance and provides critical structural information for future design of new selective compounds with improved safety profiles.


Asunto(s)
Antimaláricos/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Piridonas/metabolismo , Sitios de Unión , Complejo III de Transporte de Electrones/química , Simulación del Acoplamiento Molecular
10.
Proc Natl Acad Sci U S A ; 109(21): 8298-303, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22566611

RESUMEN

There is an urgent need for new antimalarial drugs with novel mechanisms of action to deliver effective control and eradication programs. Parasite resistance to all existing antimalarial classes, including the artemisinins, has been reported during their clinical use. A failure to generate new antimalarials with novel mechanisms of action that circumvent the current resistance challenges will contribute to a resurgence in the disease which would represent a global health emergency. Here we present a unique generation of quinolone lead antimalarials with a dual mechanism of action against two respiratory enzymes, NADH:ubiquinone oxidoreductase (Plasmodium falciparum NDH2) and cytochrome bc(1). Inhibitor specificity for the two enzymes can be controlled subtly by manipulation of the privileged quinolone core at the 2 or 3 position. Inhibitors display potent (nanomolar) activity against both parasite enzymes and against multidrug-resistant P. falciparum parasites as evidenced by rapid and selective depolarization of the parasite mitochondrial membrane potential, leading to a disruption of pyrimidine metabolism and parasite death. Several analogs also display activity against liver-stage parasites (Plasmodium cynomolgi) as well as transmission-blocking properties. Lead optimized molecules also display potent oral antimalarial activity in the Plasmodium berghei mouse malaria model associated with favorable pharmacokinetic features that are aligned with a single-dose treatment. The ease and low cost of synthesis of these inhibitors fulfill the target product profile for the generation of a potent, safe, and inexpensive drug with the potential for eventual clinical deployment in the control and eradication of falciparum malaria.


Asunto(s)
Antimaláricos/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Plasmodium falciparum/efectos de los fármacos , Piridinas/farmacología , Quinolonas/farmacología , Animales , Antimaláricos/química , Células Cultivadas , Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Hepatocitos/citología , Hepatocitos/parasitología , Macaca mulatta , Malaria Falciparum/parasitología , Masculino , Ratones , Ratones Endogámicos , Mitocondrias/efectos de los fármacos , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/crecimiento & desarrollo , Plasmodium cynomolgi/efectos de los fármacos , Plasmodium cynomolgi/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo , Piridinas/química , Quinolonas/química
11.
Chem Res Toxicol ; 27(4): 524-35, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24571427

RESUMEN

Abacavir (ABC), a nucleoside-analogue reverse transcriptase inhibitor, is associated with severe hypersensitivity reactions that are thought to involve the activation of CD8+ T cells in a HLA-B*57:01-restricted manner. Recent studies have claimed that noncovalent interactions of ABC with HLA-B*57:01 are responsible for the immunological reactions associated with ABC. However, the formation of hemoglobin-ABC aldehyde (ABCA) adducts in patients exposed to ABC suggests that protein conjugation might represent a pathway for antigen formation. To further characterize protein conjugation reactions, we used mass spectrometric methods to define ABCA modifications in patients receiving ABC therapy. ABCA formed a novel intramolecular cross-linking adduct on human serum albumin (HSA) in patients and in vitro via Michael addition, followed by nucleophilic adduction of the aldehyde with a neighboring protein nucleophile. Adducts were detected on Lys159, Lys190, His146, and Cys34 residues in the subdomain IB of HSA. Only a cysteine adduct and a putative cross-linking adduct were detected on glutathione S-transferase Pi (GSTP). These findings reveal that ABC forms novel types of antigens in all patients taking the drug. It is therefore vital that the immunological consequences of such pathways of haptenation are explored in the in vitro models that have been used by various groups to define new mechanisms of drug hypersensitivity exemplified by ABC.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Didesoxinucleósidos/metabolismo , Infecciones por VIH/tratamiento farmacológico , Inhibidores de la Transcriptasa Inversa/metabolismo , Secuencia de Aminoácidos , Proteínas Sanguíneas/química , Didesoxinucleósidos/uso terapéutico , Infecciones por VIH/sangre , Humanos , Datos de Secuencia Molecular , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Espectrometría de Masas en Tándem
12.
Proc Natl Acad Sci U S A ; 108(38): 15780-5, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21900609

RESUMEN

Carbon monoxide (CO) is a product of haem metabolism and organisms must evolve strategies to prevent endogenous CO poisoning of haemoproteins. We show that energy costs associated with conformational changes play a key role in preventing irreversible CO binding. AxCYTcp is a member of a family of haem proteins that form stable 5c-NO and 6c-CO complexes but do not form O(2) complexes. Structure of the AxCYTcp-CO complex at 1.25 Å resolution shows that CO binds in two conformations moderated by the extent of displacement of the distal residue Leu16 toward the haem 7-propionate. The presence of two CO conformations is confirmed by cryogenic resonance Raman data. The preferred linear Fe-C-O arrangement (170 ± 8°) is accompanied by a flip of the propionate from the distal to proximal face of the haem. In the second conformation, the Fe-C-O unit is bent (158 ± 8°) with no flip of propionate. The energetic cost of the CO-induced Leu-propionate movements is reflected in a 600 mV (57.9 kJ mol(-1)) decrease in haem potential, a value in good agreement with density functional theory calculations. Substitution of Leu by Ala or Gly (structures determined at 1.03 and 1.04 Å resolutions) resulted in a haem site that binds CO in the linear mode only and where no significant change in redox potential is observed. Remarkably, these variants were isolated as ferrous 6c-CO complexes, attributable to the observed eight orders of magnitude increase in affinity for CO, including an approximately 10,000-fold decrease in the rate of dissociation. These new findings have wide implications for preventing CO poisoning of gas-binding haem proteins.


Asunto(s)
Proteínas Bacterianas/química , Monóxido de Carbono/química , Citocromos c'/química , Conformación Proteica , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Monóxido de Carbono/metabolismo , Intoxicación por Monóxido de Carbono/metabolismo , Intoxicación por Monóxido de Carbono/prevención & control , Cristalización , Cristalografía por Rayos X , Citocromos c'/genética , Citocromos c'/metabolismo , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Hemo/química , Hemo/metabolismo , Humanos , Cinética , Modelos Químicos , Modelos Moleculares , Mutación , Oxidación-Reducción , Unión Proteica , Espectrometría Raman
13.
Angew Chem Int Ed Engl ; 53(1): 193-8, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24302659

RESUMEN

The peptide-based porous 3D framework, ZnCar, has been synthesized from Zn(2+) and the natural dipeptide carnosine (ß-alanyl-L-histidine). Unlike previous extended peptide networks, the imidazole side chain of the histidine residue is deprotonated to afford Zn-imidazolate chains, with bonding similar to the zeolitic imidazolate framework (ZIF) family of porous materials. ZnCar exhibits permanent microporosity with a surface area of 448 m(2) g(-1) , and its pores are 1D channels with 5 Šopenings and a characteristic chiral shape. This compound is chemically stable in organic solvents and water. Single-crystal X-ray diffraction (XRD) showed that the ZnCar framework adapts to MeOH and H2 O guests because of the torsional flexibility of the main His-ß-Ala chain, while retaining the rigidity conferred by the Zn-imidazolate chains. The conformation adopted by carnosine is driven by the H bonds formed both to other dipeptides and to the guests, permitting the observed structural transformations.

14.
RSC Chem Biol ; 5(1): 19-29, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38179191

RESUMEN

The emergence of Plasmodium parasite resistance to current front-line antimalarial treatments poses a serious threat to global malaria control and highlights the necessity for the development of therapeutics with novel targets and mechanisms of action. Plasmepsins IX and X (PMIX/PMX) have been recognised as highly promising targets in Plasmodium due to their contribution to parasite's pathogenicity. Recent research has demonstrated that dual PMIX/PMX inhibition results in the impairment of multiple parasite's life cycle stages, which is an important feature in drug resistance prevention. Herein we report novel hydroxyethylamine photoaffinity labelling (PAL) probes, designed for PMIX/PMX target engagement and proteomics experiments in Plasmodium parasites. The prepared probes have both a photoreactive group (diazirine or benzophenone) for covalent attachment to target proteins, and a terminal alkyne handle allowing their use in bioorthogonal ligation. One of the synthesised benzophenone probes was shown to be highly promising as demonstrated by its outstanding antimalarial potency (IC50 = 15 nM versus D10 P. falciparum) and its inhibitory effect against PfPMX in an enzymatic assay. Molecular docking and molecular dynamics studies show that the inclusion of the benzophenone and alkyne handle does not alter the binding mode compared to the parent compound. The photoaffinity probe can be used in future chemical proteomics studies to allow hydroxyethylamine drug scaffold target identification and validation in Plasmodium. We expect our findings to act as a tool for future investigations on PMIX/PMX inhibition in antimalarial drug discovery.

15.
J Antimicrob Chemother ; 68(4): 869-80, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23228936

RESUMEN

OBJECTIVES: Phenothiazines have been shown to exhibit in vitro and in vivo activity against Mycobacterium tuberculosis (Mtb) and multidrug-resistant Mtb. They are predicted to target the genetically validated respiratory chain component type II NADH:quinone oxidoreductase (Ndh). Using a set of compounds containing the phenothiazine pharmacophore, we have (i) investigated whether chemical validation data support the molecular target and (ii) evaluated pharmacophore tractability for further drug development. METHODS: Recombinant Mtb Ndh was generated and its functionality confirmed by steady-state kinetics. Pharmacodynamic profiling of the phenothiazines, including antitubercular efficacy in aerobic and O2-limited conditions, time-kill assays and isobole analyses against first-line antituberculars, was performed. Potential mitochondrial toxicity was assessed in a modified HepG2 cell-line assay and against bovine cytochrome bc1. RESULTS: Steady-state kinetic analyses revealed a substrate preference for coenzyme Q2 and an inability to utilize NADPH. A positive correlation between recombinant Ndh inhibition and kill of aerobically cultured Mtb was observed, whilst enhanced potency was demonstrated in a hypoxic model. Time-kill studies revealed the phenothiazines to be bactericidal whilst isobolograms exposed antagonism with isoniazid, indicative of intracellular NADH/NAD(+) couple perturbation. At therapeutic levels, phenothiazine-mediated toxicity was appreciable; however, specific mitochondrial targeting was excluded. CONCLUSIONS: Data generated support the hypothesis that Ndh is the molecular target of phenothiazines. The favourable pharmacodynamic properties of the phenothiazines are consistent with a target product profile that includes activity against dormant/persistent bacilli, rapid bactericidal activity and activity against drug-resistant Mtb by a previously unexploited mode of action. These properties warrant further medicinal chemistry to improve potency and safety.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Fenotiazinas/farmacología , Antituberculosos/química , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Viabilidad Microbiana/efectos de los fármacos , Mycobacterium tuberculosis/fisiología , Fenotiazinas/química
16.
Front Pharmacol ; 14: 1328950, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38273820

RESUMEN

Snakebite envenoming results in ∼100,000 deaths per year, with close to four times as many victims left with life-long sequelae. Current antivenom therapies have several limitations including high cost, variable cross-snake species efficacy and a requirement for intravenous administration in a clinical setting. Next-generation snakebite therapies are being widely investigated with the aim to improve cost, efficacy, and safety. In recent years several small molecule drugs have shown considerable promise for snakebite indication, with oral bioavailability particularly promising for community delivery rapidly after a snakebite. However, only two such drugs have entered clinical development for snakebite. To offset the risk of attrition during clinical trials and to better explore the chemical space for small molecule venom toxin inhibitors, here we describe the first high throughput drug screen against snake venom metalloproteinases (SVMPs)-a pathogenic toxin family responsible for causing haemorrhage and coagulopathy. Following validation of a 384-well fluorescent enzymatic assay, we screened a repurposed drug library of 3,547 compounds against five geographically distinct and toxin variable snake venoms. Our drug screen resulted in the identification of 14 compounds with pan-species inhibitory activity. Following secondary potency testing, four SVMP inhibitors were identified with nanomolar EC50s comparable to the previously identified matrix metalloproteinase inhibitor marimastat and superior to the metal chelator dimercaprol, doubling the current global portfolio of SVMP inhibitors. Following analysis of their chemical structure and ADME properties, two hit-to-lead compounds were identified. These clear starting points for the initiation of medicinal chemistry campaigns provide the basis for the first ever designer snakebite specific small molecules.

17.
Front Pharmacol ; 14: 1331224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38273832

RESUMEN

Snakebite envenoming is a neglected tropical disease that causes as many as 1.8 million envenomings and 140,000 deaths annually. To address treatment limitations that exist with current antivenoms, the search for small molecule drug-based inhibitors that can be administered as early interventions has recently gained traction. Snake venoms are complex mixtures of proteins, peptides and small molecules and their composition varies substantially between and within snake species. The phospholipases A2 (PLA2) are one of the main pathogenic toxin classes found in medically important viper and elapid snake venoms, yet varespladib, a drug originally developed for the treatment of acute coronary syndrome, remains the only PLA2 inhibitor shown to effectively neutralise venom toxicity in vitro and in vivo, resulting in an extremely limited drug portfolio. Here, we describe a high-throughput drug screen to identify novel PLA2 inhibitors for repurposing as snakebite treatments. We present method optimisation of a 384-well plate, colorimetric, high-throughput screening assay that allowed for a throughput of ∼2,800 drugs per day, and report on the screening of a ∼3,500 post-phase I repurposed drug library against the venom of the Russell's viper, Daboia russelii. We further explore the broad-spectrum inhibitory potential and efficacy of the resulting top hits against a range of medically important snake venoms and demonstrate the utility of our method in determining drug EC50s. Collectively, our findings support the future application of this method to fully explore the chemical space to discover novel PLA2-inhibiting drugs of value for preventing severe pathology caused by snakebite envenoming.

18.
ACS Infect Dis ; 9(2): 221-238, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36606559

RESUMEN

Mycobacterium tuberculosis cytochrome bd quinol oxidase (cyt bd), the alternative terminal oxidase of the respiratory chain, has been identified as playing a key role during chronic infection and presents a putative target for the development of novel antitubercular agents. Here, we report confirmation of successful heterologous expression of M. tuberculosis cytochrome bd. The heterologous M. tuberculosis cytochrome bd expression system was used to identify a chemical series of inhibitors based on the 2-aryl-quinolone pharmacophore. Cytochrome bd inhibitors displayed modest efficacy in M. tuberculosis growth suppression assays together with a bacteriostatic phenotype in time-kill curve assays. Significantly, however, inhibitor combinations containing our front-runner cyt bd inhibitor CK-2-63 with either cyt bcc-aa3 inhibitors (e.g., Q203) and/or adenosine triphosphate (ATP) synthase inhibitors (e.g., bedaquiline) displayed enhanced efficacy with respect to the reduction of mycobacterium oxygen consumption, growth suppression, and in vitro sterilization kinetics. In vivo combinations of Q203 and CK-2-63 resulted in a modest lowering of lung burden compared to treatment with Q203 alone. The reduced efficacy in the in vivo experiments compared to in vitro experiments was shown to be a result of high plasma protein binding and a low unbound drug exposure at the target site. While further development is required to improve the tractability of cyt bd inhibitors for clinical evaluation, these data support the approach of using small-molecule inhibitors to target multiple components of the branched respiratory chain of M. tuberculosis as a combination strategy to improve therapeutic and pharmacokinetic/pharmacodynamic (PK/PD) indices related to efficacy.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Quinolonas , Antituberculosos/farmacología , Citocromos/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Quinolonas/farmacología
19.
Antimicrob Agents Chemother ; 56(7): 3739-47, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22547613

RESUMEN

The mitochondrial bc(1) complex is a multisubunit enzyme that catalyzes the transfer of electrons from ubiquinol to cytochrome c coupled to the vectorial translocation of protons across the inner mitochondrial membrane. The complex contains two distinct quinone-binding sites, the quinol oxidation site of the bc(1) complex (Q(o)) and the quinone reduction site (Q(i)), located on opposite sides of the membrane within cytochrome b. Inhibitors of the Q(o) site such as atovaquone, active against the bc(1) complex of Plasmodium falciparum, have been developed and formulated as antimalarial drugs. Unfortunately, single point mutations in the Q(o) site can rapidly render atovaquone ineffective. The development of drugs that could circumvent cross-resistance with atovaquone is needed. Here, we report on the mode of action of a potent inhibitor of P. falciparum proliferation, 1-hydroxy-2-dodecyl-4(1H)quinolone (HDQ). We show that the parasite bc(1) complex--from both control and atovaquone-resistant strains--is inhibited by submicromolar concentrations of HDQ, indicating that the two drugs have different targets within the complex. The binding site of HDQ was then determined by using a yeast model. Introduction of point mutations into the Q(i) site, namely, G33A, H204Y, M221Q, and K228M, markedly decreased HDQ inhibition. In contrast, known inhibitor resistance mutations at the Q(o) site did not cause HDQ resistance. This study, using HDQ as a proof-of-principle inhibitor, indicates that the Q(i) site of the bc(1) complex is a viable target for antimalarial drug development.


Asunto(s)
Antimaláricos/farmacología , Complejo III de Transporte de Electrones/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Quinolonas/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Sitios de Unión/efectos de los fármacos , Quinolonas/síntesis química , Quinolonas/química
20.
Biology (Basel) ; 11(8)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35892964

RESUMEN

Antimalarials targeting the ubiquinol-oxidation (Qo) site of the Plasmodium falciparum bc1 complex, such as atovaquone, have become less effective due to the rapid emergence of resistance linked to point mutations in the Qo site. Recent findings showed a series of 2-aryl quinolones mediate inhibitions of this complex by binding to the ubiquinone-reduction (Qi) site, which offers a potential advantage in circumventing drug resistance. Since it is essential to understand how 2-aryl quinolone lead compounds bind within the Qi site, here we describe the co-crystallization and structure elucidation of the bovine cytochrome bc1 complex with three different antimalarial 4(1H)-quinolone sub-types, including two 2-aryl quinolone derivatives and a 3-aryl quinolone analogue for comparison. Currently, no structural information is available for Plasmodial cytochrome bc1. Our crystallographic studies have enabled comparison of an in-silico homology docking model of P. falciparum with the mammalian's equivalent, enabling an examination of how binding compares for the 2- versus 3-aryl analogues. Based on crystallographic and computational modeling, key differences in human and P. falciparum Qi sites have been mapped that provide new insights that can be exploited for the development of next-generation antimalarials with greater selective inhibitory activity against the parasite bc1 with improved antimalarial properties.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda