Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Nat Immunol ; 21(4): 381-387, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32205881

RESUMEN

Protein ubiquitination regulates protein stability and modulates the composition of signaling complexes. A20 is a negative regulator of inflammatory signaling, but the molecular mechanisms involved are ill understood. Here, we generated Tnfaip3 gene-targeted A20 mutant mice bearing inactivating mutations in the zinc finger 7 (ZnF7) and ZnF4 ubiquitin-binding domains, revealing that binding to polyubiquitin is essential for A20 to suppress inflammatory disease. We demonstrate that a functional ZnF7 domain was required for recruiting A20 to the tumor necrosis factor receptor 1 (TNFR1) signaling complex and to suppress inflammatory signaling and cell death. The combined inactivation of ZnF4 and ZnF7 phenocopied the postnatal lethality and severe multiorgan inflammation of A20-deficient mice. Conditional tissue-specific expression of mutant A20 further revealed the key role of ubiquitin-binding in myeloid and intestinal epithelial cells. Collectively, these results demonstrate that the anti-inflammatory and cytoprotective functions of A20 are largely dependent on its ubiquitin-binding properties.


Asunto(s)
Inflamación/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Animales , Células Epiteliales/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Poliubiquitina/metabolismo , Unión Proteica/fisiología , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Dedos de Zinc/fisiología
2.
Trends Immunol ; 44(8): 628-643, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37357102

RESUMEN

Tumor necrosis factor (TNF) plays a central role in orchestrating mammalian inflammatory responses. It promotes inflammation either directly by inducing inflammatory gene expression or indirectly by triggering cell death. TNF-mediated cell death-driven inflammation can be beneficial during infection by providing cell-extrinsic signals that help to mount proper immune responses. Uncontrolled cell death caused by TNF is instead highly detrimental and is believed to cause several human autoimmune diseases. Death is not the default response to TNF sensing. Molecular brakes, or cell death checkpoints, actively repress TNF cytotoxicity to protect the organism from its detrimental consequences. These checkpoints therefore constitute essential safeguards against inflammatory diseases. Recent advances in the field have revealed the existence of several new and unexpected brakes against TNF cytotoxicity and pathogenicity.


Asunto(s)
Apoptosis , Transducción de Señal , Animales , Humanos , Necrosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Muerte Celular , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Inflamación/patología , Mamíferos
3.
EMBO Rep ; 23(12): e55233, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36194667

RESUMEN

The anti-inflammatory protein A20 serves as a critical brake on NF-κB signaling and NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been associated with several inflammatory disorders, including rheumatoid arthritis (RA), and experimental studies in mice have demonstrated that myeloid-specific A20 deficiency causes the development of a severe polyarthritis resembling human RA. Myeloid A20 deficiency also promotes osteoclastogenesis in mice, suggesting a role for A20 in the regulation of osteoclast differentiation and bone formation. We show here that osteoclast-specific A20 knockout mice develop severe osteoporosis, but not inflammatory arthritis. In vitro, osteoclast precursor cells from A20 deficient mice are hyper-responsive to RANKL-induced osteoclastogenesis. Mechanistically, we show that A20 is recruited to the RANK receptor complex within minutes of ligand binding, where it restrains NF-κB activation independently of its deubiquitinating activity but through its zinc finger (ZnF) 4 and 7 ubiquitin-binding functions. Together, these data demonstrate that A20 acts as a regulator of RANK-induced NF-κB signaling to control osteoclast differentiation, assuring proper bone development and turnover.


Asunto(s)
FN-kappa B , Humanos , Animales , Ratones
4.
Eur Respir J ; 61(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36549711

RESUMEN

BACKGROUND: Receptor-interacting protein kinase 1 (RIPK1) is a key mediator of regulated cell death (including apoptosis and necroptosis) and inflammation, both drivers of COPD pathogenesis. We aimed to define the contribution of RIPK1 kinase-dependent cell death and inflammation in the pathogenesis of COPD. METHODS: We assessed RIPK1 expression in single-cell RNA sequencing (RNA-seq) data from human and mouse lungs, and validated RIPK1 levels in lung tissue of COPD patients via immunohistochemistry. Next, we assessed the consequences of genetic and pharmacological inhibition of RIPK1 kinase activity in experimental COPD, using Ripk1 S25D/S25D kinase-deficient mice and the RIPK1 kinase inhibitor GSK'547. RESULTS: RIPK1 expression increased in alveolar type 1 (AT1), AT2, ciliated and neuroendocrine cells in human COPD. RIPK1 protein levels were significantly increased in airway epithelium of COPD patients compared with never-smokers and smokers without airflow limitation. In mice, exposure to cigarette smoke (CS) increased Ripk1 expression similarly in AT2 cells, and further in alveolar macrophages and T-cells. Genetic and/or pharmacological inhibition of RIPK1 kinase activity significantly attenuated airway inflammation upon acute and subacute CS exposure, as well as airway remodelling, emphysema, and apoptotic and necroptotic cell death upon chronic CS exposure. Similarly, pharmacological RIPK1 kinase inhibition significantly attenuated elastase-induced emphysema and lung function decline. Finally, RNA-seq on lung tissue of CS-exposed mice revealed downregulation of cell death and inflammatory pathways upon pharmacological RIPK1 kinase inhibition. CONCLUSIONS: RIPK1 kinase inhibition is protective in experimental models of COPD and may represent a novel promising therapeutic approach.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Ratones , Animales , Pulmón , Muerte Celular , Inflamación/metabolismo , Ratones Endogámicos C57BL , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
5.
Trends Immunol ; 41(5): 421-435, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32241683

RESUMEN

A20 is a potent anti-inflammatory molecule, and mutations in TNFAIP3, the gene encoding A20, are associated with a wide panel of inflammatory pathologies, both in human and mouse. The anti-inflammatory properties of A20 are commonly attributed to its ability to suppress inflammatory NF-κB signaling by functioning as a ubiquitin-editing enzyme. However, A20 also protects cells from death, independently of NF-κB regulation, and recent work has demonstrated that cell death may drive some of the inflammatory conditions caused by A20 deficiency. Adding to the fact that the protective role of A20 does not primarily rely on its catalytic activities, these findings shed new light on A20 biology.


Asunto(s)
Inflamación , FN-kappa B , Humanos , Animales , Ratones , FN-kappa B/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Inflamación/metabolismo , Transducción de Señal , Muerte Celular , Antiinflamatorios
6.
Mol Cell ; 60(1): 63-76, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26344099

RESUMEN

TNF is a master pro-inflammatory cytokine. Activation of TNFR1 by TNF can result in both RIPK1-independent apoptosis and RIPK1 kinase-dependent apoptosis or necroptosis. These cell death outcomes are regulated by two distinct checkpoints during TNFR1 signaling. TNF-mediated NF-κB-dependent induction of pro-survival or anti-apoptotic molecules is a well-known late checkpoint in the pathway, protecting cells from RIPK1-independent death. On the other hand, the molecular mechanism regulating the contribution of RIPK1 to cell death is far less understood. We demonstrate here that the IKK complex phosphorylates RIPK1 at TNFR1 complex I and protects cells from RIPK1 kinase-dependent death, independent of its function in NF-κB activation. We provide in vitro and in vivo evidence that inhibition of IKKα/IKKß or its upstream activators sensitizes cells to death by inducing RIPK1 kinase-dependent apoptosis or necroptosis. We therefore report on an unexpected, NF-κB-independent role for the IKK complex in protecting cells from RIPK1-dependent death downstream of TNFR1.


Asunto(s)
Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Caspasa 8/metabolismo , Muerte Celular , Línea Celular , Embrión de Mamíferos/citología , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Fosforilación , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología
7.
Opt Express ; 30(8): 13603-13615, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35472970

RESUMEN

Chalcogenide glass exhibits a wide transmission window in the infrared range, a high refractive index, and nonlinear optical properties; however, due to its poor mechanical properties and low chemical and environmental stability, producing three-dimensional microstructures of chalcogenide glass remains a challenge. Here, we combine the fabrication of arbitrarily shaped three-dimensional cavities within fused silica molds by means of femtosecond laser-assisted chemical etching with the pressure-assisted infiltration of a chalcogenide glass into the resulting carved silica mold structures. This process enables the fabrication of 3D, geometrically complex, chalcogenide-silica micro-glass composites. The resulting products feature a high refractive index contrast that enables total-internal-reflection guiding and an optical quality roughness level suited for applications in the infrared.

8.
Opt Express ; 30(3): 4631-4641, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35209695

RESUMEN

We present a quantum cascade laser-based absorption spectrometer deploying a compact (145 mL volume) segmented circular multipass cell (SC-MPC) with 6 m optical path length. This SC-MPC is embedded into an effective cooling system to facilitate operation at cryogenic temperatures. For CO2, the sample is cooled to 153 K, i.e. close to the sublimation point at 10 mbar. This enables efficient suppression of interfering hot-band transitions of the more abundant isotopic species and thereby enhances analytical precision. As a demonstration, the amount fractions of all three CO2 isotopologues involved in the kinetic isotope exchange reaction of 12C16O2 + 12C18O2⇌ 2·12C16O18O are measured. The precision in the ratios [12C18O2]/[12C16O2] and [12C16O18O]/[12C16O2] is 0.05 ‰ with 25 s integration time. In addition, we determine the variation of the equilibrium constant, K, of the above exchange reaction for carbon-dioxide samples equilibrated at 300 K and 1273 K, respectively.

9.
Opt Express ; 30(20): 36087-36095, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258545

RESUMEN

Optical frequency combs based on semiconductor lasers are a promising technology for monolithic integration of dual-comb spectrometers. However, the stabilization of offset frequency fceo remains a challenging feat due the lack of octave-spanning spectra. In a dual-comb configuration, the uncorrelated jitter of the offset frequencies leads to a non-periodic signal resulting in broadened beatnotes with a limited signal-to-noise ratio (SNR). Hence, expensive data acquisition schemes and complex signal processing are currently required. Here, we show that the offset frequencies of two frequency combs can be synchronized by optical injection locking, which allows full phase-stabilization when combined with electrical injection locking of both repetition frequencies frep. A single comb line isolated via an optical Vernier filter serves as Master oscillator for injection locking. The resulting dual-comb signal is periodic and stable over thousands of periods. This enables coherent averaging using analog electronics, which increases the SNR and reduces the data size by one and three orders of magnitude, respectively. The presented method will enable fully phase-stabilized dual-comb spectrometers by leveraging on integrated optical filters and provides access for comparing and stabilizing fceo to narrow-linewidth optical references.

10.
J Immunol ; 204(4): 775-787, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31900335

RESUMEN

Immunogenic cell death (ICD) occurs when a dying cell releases cytokines and damage-associated molecular patterns, acting as adjuvants, and expresses Ags that induce a specific antitumor immune response. ICD is studied mainly in the context of regulated cell death pathways, especially caspase-mediated apoptosis marked by endoplasmic reticulum stress and calreticulin exposure and, more recently, also in relation to receptor-interacting protein kinase-driven necroptosis, whereas unregulated cell death like accidental necrosis is nonimmunogenic. Importantly, the murine cancer cell lines used in ICD studies often express virally derived peptides that are recognized by the immune system as tumor-associated Ags. However, it is unknown how different cell death pathways may affect neoepitope cross-presentation and Ag recognition of cancer cells. We used a prophylactic tumor vaccination model and observed that both apoptotic and necroptotic colon carcinoma CT26 cells efficiently immunized mice against challenge with a breast cancer cell line that expresses the same immunodominant tumor Ag, AH1, but only necroptotic CT26 cells would mount an immune response against CT26-specific neoepitopes. By CRISPR/Cas9 genome editing, we knocked out AH1 and saw that only necroptotic CT26 cells were still able to protect mice against tumor challenge. Hence, in this study, we show that endogenous AH1 tumor Ag expression can mask the strength of immunogenicity induced by different cell death pathways and that upon knockout of AH1, necroptosis was more immunogenic than apoptosis in a prophylactic tumor vaccination model. This work highlights necroptosis as a possible preferred ICD form over apoptosis in the treatment of cancer.


Asunto(s)
Antígenos de Neoplasias/inmunología , Apoptosis/inmunología , Epítopos Inmunodominantes/inmunología , Necroptosis/inmunología , Neoplasias Experimentales/inmunología , Animales , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos BALB C
11.
Water Sci Technol ; 86(3): 596-609, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35960839

RESUMEN

An iron-based powder material composed of zerovalent iron (8 wt.%) and magnetite (92 wt.%), has been synthesized hydrothermally at 200 °C from zero-valent iron. Its effect on the reduction of aqueous Hg2+ into gaseous Hg0 has been investigated at ambient conditions for pH comprised between 4 and 8.5. The production of Hg0 was monitored with an online mercury vapor analyzer at the picogram level for concentrations of iron-based composite of a few tenths of mg L-1. Starting from a solution having an Hg2+ concentration of 25 ng L-1 at pH = 4, a succession of two Hg0 production events was recorded. The first event is related to the Hg2+ reduction by ZVI which fully dissolved within the first hours. Upon ZVI consumption, pH drifted towards the pH window where magnetite can efficiently reduce Hg2+ at the hour timescale, resulting in a second Hg0 production peak. The combined use of ZVI and magnetite to remove aqueous Hg2+ by formation of Hg0 (volatile) under mild acidic pH allows (1) to maximize the Hg2+ reduction rate and (2) to take benefit of the longer lifetime of magnetite compared to ZVI.

12.
Opt Express ; 29(16): 24592-24605, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614812

RESUMEN

Frequency dissemination in phase-stabilized optical fiber networks for metrological frequency comparisons and precision measurements are promising candidates to overcome the limitations imposed by satellite techniques. However, in an architecture shared with telecommunication data traffic, network constraints restrict the availability of dedicated channels in the commonly-used C-band. Here, we demonstrate the dissemination of an SI-traceable ultrastable optical frequency in the L-band over a 456 km fiber network with ring topology, in which data traffic occupies the full C-band. We characterize the optical phase noise and evaluate a link instability of 4.7 × 10-16 at 1 s and 3.8 × 10-19 at 2000 s integration time, and a link accuracy of 2 × 10-18. We demonstrate the application of the disseminated frequency by establishing the SI-traceability of a laser in a remote laboratory. Finally, we show that our metrological frequency does not interfere with data traffic in the telecommunication channels. Our approach combines an unconventional spectral choice in the telecommunication L-band with established frequency-stabilization techniques, providing a novel, cost-effective solution for ultrastable frequency-comparison and dissemination, and may contribute to a foundation of a world-wide metrological network.

13.
Am J Respir Crit Care Med ; 201(11): 1358-1371, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32105156

RESUMEN

Rationale: Respiratory syncytial virus (RSV) bronchiolitis causes significant infant mortality. Bronchiolitis is characterized by airway epithelial cell (AEC) death; however, the mode of death remains unknown.Objectives: To determine whether necroptosis contributes to RSV bronchiolitis pathogenesis via HMGB1 (high mobility group box 1) release.Methods: Nasopharyngeal samples were collected from children presenting to the hospital with acute respiratory infection. Primary human AECs and neonatal mice were inoculated with RSV and murine Pneumovirus, respectively. Necroptosis was determined via viability assays and immunohistochemistry for RIPK1 (receptor-interacting protein kinase-1), MLKL (mixed lineage kinase domain-like pseudokinase) protein, and caspase-3. Necroptosis was blocked using pharmacological inhibitors and RIPK1 kinase-dead knockin mice.Measurements and Main Results: HMGB1 levels were elevated in nasopharyngeal samples of children with acute RSV infection. RSV-induced epithelial cell death was associated with increased phosphorylated RIPK1 and phosphorylated MLKL but not active caspase-3 expression. Inhibition of RIPK1 or MLKL attenuated RSV-induced HMGB1 translocation and release, and lowered viral load. MLKL inhibition increased active caspase-3 expression in a caspase-8/9-dependent manner. In susceptible mice, Pneumovirus infection upregulated RIPK1 and MLKL expression in the airway epithelium at 8 to 10 days after infection, coinciding with AEC sloughing, HMGB1 release, and neutrophilic inflammation. Genetic or pharmacological inhibition of RIPK1 or MLKL attenuated these pathologies, lowered viral load, and prevented type 2 inflammation and airway remodeling. Necroptosis inhibition in early life ameliorated asthma progression induced by viral or allergen challenge in later life.Conclusions: Pneumovirus infection induces AEC necroptosis. Inhibition of necroptosis may be a viable strategy to limit the severity of viral bronchiolitis and break its nexus with asthma.


Asunto(s)
Bronquiolitis/virología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteína HMGB1/metabolismo , Necroptosis , Mucosa Respiratoria/citología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Animales , Preescolar , Humanos , Lactante , Ratones , Estudios Prospectivos
14.
Nature ; 513(7516): 95-9, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25186904

RESUMEN

Receptor interacting protein kinase 1 (RIPK1) has an essential role in the signalling triggered by death receptors and pattern recognition receptors. RIPK1 is believed to function as a node driving NF-κB-mediated cell survival and inflammation as well as caspase-8 (CASP8)-dependent apoptotic or RIPK3/MLKL-dependent necroptotic cell death. The physiological relevance of this dual function has remained elusive because of the perinatal death of RIPK1 full knockout mice. To circumvent this problem, we generated RIPK1 conditional knockout mice, and show that mice lacking RIPK1 in intestinal epithelial cells (IECs) spontaneously develop severe intestinal inflammation associated with IEC apoptosis leading to early death. This early lethality was rescued by antibiotic treatment, MYD88 deficiency or tumour-necrosis factor (TNF) receptor 1 deficiency, demonstrating the importance of commensal bacteria and TNF in the IEC Ripk1 knockout phenotype. CASP8 deficiency, but not RIPK3 deficiency, rescued the inflammatory phenotype completely, indicating the indispensable role of RIPK1 in suppressing CASP8-dependent apoptosis but not RIPK3-dependent necroptosis in the intestine. RIPK1 kinase-dead knock-in mice did not exhibit any sign of inflammation, suggesting that RIPK1-mediated protection resides in its kinase-independent platform function. Depletion of RIPK1 in intestinal organoid cultures sensitized them to TNF-induced apoptosis, confirming the in vivo observations. Unexpectedly, TNF-mediated NF-κB activation remained intact in these organoids. Our results demonstrate that RIPK1 is essential for survival of IECs, ensuring epithelial homeostasis by protecting the epithelium from CASP8-mediated IEC apoptosis independently of its kinase activity and NF-κB activation.


Asunto(s)
Apoptosis , Células Epiteliales/citología , Células Epiteliales/metabolismo , Epitelio/metabolismo , Homeostasis , Mucosa Intestinal/metabolismo , Intestinos/citología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Antibacterianos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 8/genética , Caspasa 8/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Epitelio/efectos de los fármacos , Epitelio/patología , Femenino , Eliminación de Gen , Homeostasis/efectos de los fármacos , Inflamación/metabolismo , Inflamación/patología , Intestinos/efectos de los fármacos , Intestinos/patología , Masculino , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/deficiencia , FN-kappa B/metabolismo , Necrosis , Organoides/citología , Organoides/efectos de los fármacos , Organoides/enzimología , Organoides/metabolismo , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Análisis de Supervivencia , Factores de Necrosis Tumoral/farmacología
15.
N Engl J Med ; 374(19): 1853-63, 2016 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-27120771

RESUMEN

BACKGROUND: Three pregnancies with male offspring in one family were complicated by severe polyhydramnios and prematurity. One fetus died; the other two had transient massive salt-wasting and polyuria reminiscent of antenatal Bartter's syndrome. METHODS: To uncover the molecular cause of this possibly X-linked disease, we performed whole-exome sequencing of DNA from two members of the index family and targeted gene analysis of other members of this family and of six additional families with affected male fetuses. We also evaluated a series of women with idiopathic polyhydramnios who were pregnant with male fetuses. We performed immunohistochemical analysis, knockdown and overexpression experiments, and protein-protein interaction studies. RESULTS: We identified a mutation in MAGED2 in each of the 13 infants in our analysis who had transient antenatal Bartter's syndrome. MAGED2 encodes melanoma-associated antigen D2 (MAGE-D2) and maps to the X chromosome. We also identified two different MAGED2 mutations in two families with idiopathic polyhydramnios. Four patients died perinatally, and 11 survived. The initial presentation was more severe than in known types of antenatal Bartter's syndrome, as reflected by an earlier onset of polyhydramnios and labor. All symptoms disappeared spontaneously during follow-up in the infants who survived. We showed that MAGE-D2 affects the expression and function of the sodium chloride cotransporters NKCC2 and NCC (key components of salt reabsorption in the distal renal tubule), possibly through adenylate cyclase and cyclic AMP signaling and a cytoplasmic heat-shock protein. CONCLUSIONS: We found that MAGED2 mutations caused X-linked polyhydramnios with prematurity and a severe but transient form of antenatal Bartter's syndrome. MAGE-D2 is essential for fetal renal salt reabsorption, amniotic fluid homeostasis, and the maintenance of pregnancy. (Funded by the University of Groningen and others.).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Antígenos de Neoplasias/genética , Síndrome de Bartter/genética , Enfermedades Genéticas Ligadas al Cromosoma X , Mutación , Polihidramnios/genética , Femenino , Muerte Fetal , Enfermedades Fetales/genética , Feto/metabolismo , Humanos , Riñón/metabolismo , Masculino , Linaje , Embarazo , Nacimiento Prematuro/genética , Análisis de Secuencia de ADN , Simportadores del Cloruro de Sodio/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo
16.
Trends Immunol ; 37(8): 535-545, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27424290

RESUMEN

TNF is a master proinflammatory cytokine whose pathogenic role in inflammatory disorders has long been attributed to induction of proinflammatory mediators. TNF also activates cell survival and death pathways, and recent studies demonstrated that TNF also causes inflammation by inducing cell death. The default response of most cells to TNF is survival and NF-κB-mediated upregulation of prosurvival molecules is a well-documented protective mechanism downstream of TNFR1. Recent studies revealed the existence of an NF-κB-independent cell death checkpoint that restricts cell demise by inactivating RIPK1. Disruption of this checkpoint leads to RIPK1 kinase-dependent death and causes inflammation in vivo. These revelations bring complexity to the control of TNF-induced cell death, and suggest clinical benefit of RIPK1 inhibitors in TNF-driven human inflammatory disorders.


Asunto(s)
FN-kappa B/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Animales , Biomarcadores , Muerte Celular , Citocinas/metabolismo , Regulación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional
17.
Mol Cell ; 43(3): 323-5, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21816342

RESUMEN

In this issue of Molecular Cell, Tenev et al. and Feoktistova et al. describe the Ripoptosome, a cytosolic death-inducing RIP1-, FADD-, and caspase-8-containing complex that spontaneously assembles upon cIAP depletion, challenging the view that such complexes exclusively originate from receptor activation.

18.
Opt Express ; 26(25): 32500-32508, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30645416

RESUMEN

We demonstrate lasing up to 230 K in a GeSn heterostructure micro-disk cavity. The GeSn 16.0% optically active layer was grown on a step-graded GeSn buffer, limiting the density of misfit dislocations. The lasing wavelengths shifted from 2720 to 2890 nm at 15 K up to 3200 nm at 230 K. Compared to results reported elsewhere, we attribute the increase in maximal lasing temperature to two factors: a stronger optical confinement by a thicker active layer and a better carrier confinement provided by a GeSn 13.8% / GeSn 16.0% / GeSn 13.8% double heterostructure.

19.
Immunity ; 30(6): 789-801, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19464198

RESUMEN

Cellular inhibitor of apoptosis proteins (cIAPs) block apoptosis, but their physiological functions are still under investigation. Here, we report that cIAP1 and cIAP2 are E3 ubiquitin ligases that are required for receptor-interacting protein 2 (RIP2) ubiquitination and for nucleotide-binding and oligomerization (NOD) signaling. Macrophages derived from Birc2(-/-) or Birc3(-/-) mice, or colonocytes depleted of cIAP1 or cIAP2 by RNAi, were defective in NOD signaling and displayed sharp attenuation of cytokine and chemokine production. This blunted response was observed in vivo when Birc2(-/-) and Birc3(-/-) mice were challenged with NOD agonists. Defects in NOD2 signaling are associated with Crohn's disease, and muramyl dipeptide (MDP) activation of NOD2 signaling protects mice from experimental colitis. Here, we show that administration of MDP protected wild-type but not Ripk2(-/-) or Birc3(-/-) mice from colitis, confirming the role of the cIAPs in NOD2 signaling in vivo. This discovery provides therapeutic opportunities in the treatment of NOD-dependent immunologic and inflammatory diseases.


Asunto(s)
Inmunidad Innata , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacología , Animales , Apoptosis/inmunología , Proteína 3 que Contiene Repeticiones IAP de Baculovirus , Colitis/enzimología , Colitis/inmunología , Colitis/patología , Citocinas/inmunología , Citocinas/metabolismo , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Adaptadora de Señalización NOD1/agonistas , Proteína Adaptadora de Señalización NOD1/inmunología , Proteína Adaptadora de Señalización NOD2/agonistas , Proteína Adaptadora de Señalización NOD2/inmunología , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Receptores de Reconocimiento de Patrones/agonistas , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Ubiquitina-Proteína Ligasas , Ubiquitinación/inmunología
20.
Semin Cell Dev Biol ; 39: 106-14, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24718315

RESUMEN

As indicated by their name, members of the Inhibitor of APoptosis (IAP) family were first believed to be functionally restricted to apoptosis inhibition. It is now clear that IAPs have a much wider spectrum of action, and recent studies even suggest that some of its members primarily regulate inflammatory responses. Inflammation, the first response of the immune system to infection or tissue injury, is highly regulated by ubiquitylation - a posttranslational modification of proteins with various consequences. In this review, we focus on the recently reported functions of XIAP, cIAP1 and cIAP2 as ubiquitin ligases regulating innate immunity and inflammation.


Asunto(s)
Inmunidad Innata , Inflamación/inmunología , Proteínas Inhibidoras de la Apoptosis/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Animales , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda