Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Neurochem ; 167(2): 204-217, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37674350

RESUMEN

There is much interest in identifying novel pharmacotherapeutic targets that improve clinical outcomes for the treatment of alcohol use disorder (AUD). One promising target for therapeutic intervention is the relaxin family peptide 3 (RXFP3) receptor, a cognate receptor for neuropeptide relaxin-3, which has previously been implicated in regulating alcohol drinking behavior. Recently, we developed the first small-molecule RXFP3-selective negative allosteric modulator (NAM) RLX-33. Therefore, the goal of the present work was to characterize the impact of this novel NAM on affective-related behaviors and alcohol self-administration in rats. First, the effects of RLX-33 were tested on alcohol and sucrose self-administration in Wistar and alcohol-preferring P rats to determine the dose-response profile and specificity for alcohol. Then, we assessed the effects of systemic RLX-33 injection in Wistar rats in a battery of behavioral assays (open-field test, elevated zero maze, acoustic startle response test, and prepulse inhibition) and tested for alcohol clearance. We found that the lowest effective dose (5 mg/kg) reduced alcohol self-administration in both male and female Wistar rats, while in alcohol-preferring P rats, this effect was restricted to males, and there were no effects on sucrose self-administration or general locomotor activity. The characterization of affective and metabolic effects in Wistar rats generally found few locomotor, affective, or alcohol clearance changes, particularly at the 5 mg/kg dose. Overall, these findings are promising and suggest that RXFP3 NAM has potential as a pharmacological target for treating AUD.


Asunto(s)
Alcoholismo , Relaxina , Ratas , Masculino , Femenino , Animales , Ratas Wistar , Reflejo de Sobresalto , Relaxina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Etanol , Alcoholismo/tratamiento farmacológico , Alcoholismo/metabolismo , Sacarosa , Receptores de Péptidos
2.
J Pharmacol Exp Ther ; 380(3): 153-161, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34930820

RESUMEN

The endocannabinoid system is implicated in the neuronal mechanisms of alcohol use disorder (AUD), with the cannabinoid receptor subtype 1 (CB1) representing a promising target for AUD therapeutic interventions. We have previously shown negative allosteric modulators (NAMs) of the CB1 receptor attenuated the reinstatement of other drugs of abuse including cocaine and methamphetamine in rats; however, their effects on alcohol-related behaviors have not been investigated. Here, we tested the pharmacokinetic properties of one such CB1 NAM, RTICBM-74, and its effects on alcohol self-administration in rats. RTICBM-74 showed low aqueous solubility and high protein binding but had excellent half-life and low clearance against rat liver microsomes and hepatocytes, and excellent brain penetrance in rats. RTICBM-74 pretreatment specifically reduced alcohol intake across a range of doses in male or female Wistar or Long-Evans rats that were trained to self-administer alcohol. These effects were similar to the CB1 antagonist/inverse agonist rimonabant, which was tested as a positive control. Importantly, RTICBM-74 was effective at reducing alcohol intake at doses that did not affect locomotion or sucrose self-administration. Our findings suggest that CB1 NAMs such as RTICBM-74 have promising therapeutic potential in treatment of AUD. SIGNIFICANCE STATEMENT: The present work shows that a metabolically stable and brain-penetrant cannabinoid receptor subtype 1 negative allosteric modulator reduces alcohol self-administration in rats without affecting locomotion or sucrose self-administration, suggesting potential therapeutic relevance for the treatment of alcohol use disorder.


Asunto(s)
Alcoholismo , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Alcoholismo/metabolismo , Animales , Encéfalo/metabolismo , Etanol/farmacología , Femenino , Masculino , Ratas , Ratas Long-Evans , Ratas Wistar , Receptor Cannabinoide CB1/metabolismo , Receptores de Cannabinoides/metabolismo , Autoadministración , Sacarosa/farmacología
3.
Addict Biol ; 27(3): e13176, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35470561

RESUMEN

There is growing evidence that immune signalling may be involved in both the causes and consequences of alcohol abuse. Toll-like receptor (TLR) expression is increased by alcohol consumption and is implicated in AUD, and specifically TLR7 may play an important role in ethanol consumption. We administered the TLR7-specific agonist imiquimod in male and female Long-Evans rats to determine (1) gene expression changes in brain regions involved in alcohol reinforcement, the nucleus accumbens core and anterior insular cortex, in rats with and without an alcohol history, and (2) whether TLR7 activation could modulate operant alcohol self-administration. Interferon regulatory factor 7 (IRF7) was dramatically increased in both sexes at both 2- and 24-h post-injection regardless of alcohol history and TLR3 and 7 gene expression was increased as well. The proinflammatory cytokine TNFα was increased 24-h post-injection in rats with an alcohol self-administration history, but this effect did not persist after four injections, suggesting molecular tolerance. Ethanol consumption was increased 24 h after imiquimod injections but did not occur until the third injection, suggesting adaptation to repeated TLR7 activation is necessary for increased drinking to occur. Notably, imiquimod reliably induced weight loss, indicating that sickness behaviour persisted across repeated injections. These findings show that TLR7 activation can modulate alcohol drinking in an operant self-administration paradigm and suggest that TLR7 and IRF7 signalling pathways may be a viable druggable target for treatment of AUD.


Asunto(s)
Etanol , Receptor Toll-Like 7 , Animales , Condicionamiento Operante , Etanol/farmacología , Femenino , Imiquimod/farmacología , Masculino , Ratas , Ratas Long-Evans , Receptores Toll-Like
4.
Neuroimage ; 243: 118541, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34478824

RESUMEN

Resting-state functional magnetic resonance imaging (fMRI) has drastically expanded the scope of brain research by advancing our knowledge about the topologies, dynamics, and interspecies translatability of functional brain networks. Several databases have been developed and shared in accordance with recent key initiatives in the rodent fMRI community to enhance the transparency, reproducibility, and interpretability of data acquired at various sites. Despite these pioneering efforts, one notable challenge preventing efficient standardization in the field is the customary choice of anisotropic echo planar imaging (EPI) schemes with limited spatial coverage. Imaging with anisotropic resolution and/or reduced brain coverage has significant shortcomings including reduced registration accuracy and increased deviation in brain feature detection. Here we proposed a high-spatial-resolution (0.4 mm), isotropic, whole-brain EPI protocol for the rat brain using a horizontal slicing scheme that can maintain a functionally relevant repetition time (TR), avoid high gradient duty cycles, and offer unequivocal whole-brain coverage. Using this protocol, we acquired resting-state EPI fMRI data from 87 healthy rats under the widely used dexmedetomidine sedation supplemented with low-dose isoflurane on a 9.4 T MRI system. We developed an EPI template that closely approximates the Paxinos and Watson's rat brain coordinate system and demonstrated its ability to improve the accuracy of group-level approaches and streamline fMRI data pre-processing. Using this database, we employed a multi-scale dictionary-learning approach to identify reliable spatiotemporal features representing rat brain intrinsic activity. Subsequently, we performed k-means clustering on those features to obtain spatially discrete, functional regions of interest (ROIs). Using Euclidean-based hierarchical clustering and modularity-based partitioning, we identified the topological organizations of the rat brain. Additionally, the identified group-level FC network appeared robust across strains and sexes. The "triple-network" commonly adapted in human fMRI were resembled in the rat brain. Through this work, we disseminate raw and pre-processed isotropic EPI data, a rat brain EPI template, as well as identified functional ROIs and networks in standardized rat brain coordinates. We also make our analytical pipelines and scripts publicly available, with the hope of facilitating rat brain resting-state fMRI study standardization.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos , Animales , Mapeo Encefálico/métodos , Análisis por Conglomerados , Procesamiento de Imagen Asistido por Computador/métodos , Isoflurano , Masculino , Ratas , Reproducibilidad de los Resultados
5.
Addict Biol ; 26(3): e12965, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33015936

RESUMEN

Alcohol abuse and dependence are world-wide health problems. Most research on alcohol use focuses on the consequences of moderate to high levels of alcohol. However, even at low concentrations, alcohol is capable of producing effects in the brain that can ultimately affect behavior. The current studies seek to understand the effects of low-dose alcohol (blood alcohol levels of ≤10mM). To do so, these experiments utilize a combination of behavioral and molecular techniques to (1) assess the ability of the interoceptive effects of a low dose of alcohol to gain control over goal-tracking behavior in a Pavlovian discrimination task, (2) determine brain regional differences in cellular activity via expression of immediate early genes (IEGs), and (3) assess the role of the dentate gyrus in modulating sensitivity to the interoceptive effects of a low dose of alcohol. Here, we show that intragastric administration of a dose of 0.8 g/kg alcohol produces blood alcohol levels ≤10mM in both male and female Long-Evans rats and can readily be trained as a Pavlovian interoceptive drug cue. In rats trained on this procedure, this dose of alcohol also modulates expression of the IEGs c-Fos and Arc in brain regions known to modulate expression of alcohol interoceptive effects. Finally, pharmacological inactivation of the dentate gyrus with GABA agonists baclofen and muscimol disrupted the ability of a low dose of alcohol to serve as an interoceptive cue. Together, these findings demonstrate behavioral and molecular consequences of low-dose alcohol.


Asunto(s)
Baclofeno/farmacología , Conducta Animal/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Etanol/farmacología , Muscimol/farmacología , Animales , Aprendizaje Discriminativo/efectos de los fármacos , Aprendizaje Discriminativo/fisiología , Femenino , Masculino , Ratas , Ratas Long-Evans , Autoadministración
6.
Addict Biol ; 25(4): e12782, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31173443

RESUMEN

Combined use of nicotine and alcohol constitute a significant public health risk. An important aspect of drug use and dependence are the various cues, both external (contextual) and internal (interoceptive) that influence drug-seeking and drug-taking behavior. The present experiments employed the use of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) and complementary Pavlovian drug discrimination procedures (feature-positive and feature-negative training conditions) in order to examine whether medial prefrontal cortex (prelimbic; mPFC-PL) projections to the nucleus accumbens core (AcbC) modulate sensitivity to a nicotine + alcohol (N + A) interoceptive cue. First, we show neuronal activation in mPFC-PL and AcbC following treatment with N + A. Next, we demonstrate that chemogenetic silencing of projections from mPFC-PL to nucleus accumbens core decrease sensitivity to the N + A interoceptive cue, while enhancing sensitivity to the individual components, suggesting an important role for this specific projection. Furthermore, we demonstrate that clozapine-N-oxide (CNO), the ligand used to activate the DREADDs, had no effect in parallel mCherry controls. These findings contribute important information regarding our understanding of the cortical-striatal circuitry that regulates sensitivity to the interoceptive effects of a compound N + A cue.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Comportamiento de Búsqueda de Drogas/fisiología , Etanol/farmacología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Núcleo Accumbens/fisiología , Corteza Prefrontal/fisiología , Animales , Condicionamiento Clásico , Señales (Psicología) , Aprendizaje Discriminativo , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Interocepción , Masculino , Vías Nerviosas/fisiología , Núcleo Accumbens/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Ratas
7.
Alcohol Clin Exp Res ; 43(1): 48-60, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30403408

RESUMEN

BACKGROUND: Growing evidence suggests that neuroimmune signaling via Toll-like receptors (TLRs) alters brain circuitry related to alcohol use disorders. Both ethanol (EtOH) exposure and the TLR3 agonist, poly(I:C), increase brain TLR3 expression in neurons and glia. Furthermore, previous studies have shown that cortical TLR3 expression is correlated with lifetime EtOH intake in humans. METHODS: The current experiments investigated the consequences of poly(I:C) treatment on gene expression in 2 brain regions contributing to alcohol reinforcement, the insular cortex (IC) and nucleus accumbens (Acb) and on operant EtOH self-administration, in Long Evans rats. RESULTS: TLR3 activation increased mRNA levels of neuroimmune genes (TLR3, COX2), glutamatergic genes (mGluR2, mGluR3, GLT1), and the trophic factor BDNF in Acb and IC. Furthermore, increases in each of these genes were correlated with increases in TLR3 mRNA, suggesting that TLR3 induction of these genes may impact excitatory transmission in IC and Acb. TLR3 activation also increased EtOH self-administration 18 days postinjection and enhanced the effects of the mGluR2/3 agonist LY379268 to reduce EtOH self-administration following poly(I:C). CONCLUSIONS: Together, these findings suggest lasting consequences of TLR3 activation on gene expression including increases in Group II mGluRs in the Acb. Furthermore, we show an important role for TLR3 signaling in EtOH intake, and a functional involvement of Group II mGluRs.


Asunto(s)
Etanol/farmacología , Expresión Génica/efectos de los fármacos , Receptor Toll-Like 3/agonistas , Aminoácidos/farmacología , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Corteza Cerebral/metabolismo , Condicionamiento Operante/efectos de los fármacos , Sinergismo Farmacológico , Etanol/antagonistas & inhibidores , Masculino , Núcleo Accumbens/metabolismo , Poli I-C/farmacología , Ratas , Autoadministración , Receptor Toll-Like 3/biosíntesis
8.
Addict Biol ; 23(5): 1020-1031, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28960802

RESUMEN

The insular cortex (IC) is a region proposed to modulate, in part, interoceptive states and motivated behavior. Interestingly, IC dysfunction and deficits in interoceptive processing are often found among individuals with substance-use disorders. Furthermore, the IC projects to the nucleus accumbens core (AcbC), a region known to modulate the discriminative stimulus/interoceptive effects of alcohol and other drug-related behaviors. Therefore, the goal of the present work was to investigate the possible role of the IC âž” AcbC circuit in modulating the interoceptive effects of alcohol. Thus, we utilized a chemogenetic technique (hM4Di designer receptor activation by designer drugs) to silence neuronal activity in the IC of rats trained to discriminate alcohol (1 g/kg, IG) versus water using an operant or Pavlovian alcohol discrimination procedure. Chemogenetic silencing of the IC or IC âž” AcbC neuronal projections resulted in potentiated sensitivity to the interoceptive effects of alcohol in both the operant and Pavlovian tasks. Together, these data provide critical evidence for the nature of the complex IC circuitry and, specifically, suppression of the insular-striatal circuit in modulating behavior under a drug stimulus control.


Asunto(s)
Alcoholismo/fisiopatología , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Etanol/farmacología , Interocepción/efectos de los fármacos , Animales , Corteza Cerebral/fisiopatología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Cuerpo Estriado/fisiopatología , Aprendizaje Discriminativo/efectos de los fármacos , Aprendizaje Discriminativo/fisiología , Discriminación en Psicología/efectos de los fármacos , Discriminación en Psicología/fisiología , Modelos Animales de Enfermedad , Interocepción/fisiología , Masculino , Ratas , Ratas Long-Evans
9.
Addict Biol ; 22(3): 652-664, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-26742808

RESUMEN

Growing evidence indicates that drugs of abuse gain control over the individual by usurping glutamate-linked mechanisms of neuroplasticity in reward-related brain regions. Accordingly, we have shown that glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) activity in the amygdala is required for the positive reinforcing effects of alcohol, which underlie the initial stages of addiction. It is unknown, however, if enhanced AMPAR activity in the amygdala facilitates alcohol self-administration, which is a kernel premise of glutamate hypotheses of addiction. Here, we show that low-dose alcohol (0.6 g/kg/30 minutes) self-administration increases phosphorylation (activation) of AMPAR subtype GluA1 S831 (pGluA1 S831) in the central amygdala (CeA), basolateral amygdala and nucleus accumbens core (AcbC) of selectively bred alcohol-preferring P-rats as compared with behavior-matched (non-drug) sucrose controls. The functional role of enhanced AMPAR activity was assessed via site-specific infusion of the AMPAR positive modulator, aniracetam, in the CeA and AcbC prior to alcohol self-administration. Intra-CeA aniracetam increased alcohol-reinforced but not sucrose-reinforced responding and was ineffective following intra-AcbC infusion. Because GluA1 S831 is a Ca2+/calmodulin-dependent protein kinase II (CaMKII) substrate, we sought to determine if AMPAR regulation of enhanced alcohol self-administration is dependent on CaMKII activity. Intra-CeA infusion of the cell-permeable CaMKII peptide inhibitor myristolated autocamtide-2-related inhibitory peptide (m-AIP) dose-dependently reduced alcohol self-administration. A subthreshold dose of m-AIP also blocked the aniracetam-induced escalation of alcohol self-administration, demonstrating that AMPAR-mediated potentiation of alcohol reinforcement requires CaMKII activity in the amygdala. Enhanced activity of plasticity-linked AMPAR-CaMKII signaling in the amygdala may promote escalated alcohol use via increased positive reinforcement during the initial stages of addiction.


Asunto(s)
Alcoholismo/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Etanol/farmacología , Receptores AMPA/metabolismo , Alcoholismo/genética , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Etanol/administración & dosificación , Masculino , Fosforilación/efectos de los fármacos , Ratas , Receptores AMPA/genética , Refuerzo en Psicología , Autoadministración , Transducción de Señal/efectos de los fármacos , Sacarosa/administración & dosificación
10.
Eur J Neurosci ; 44(8): 2569-2580, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27543844

RESUMEN

The nucleus accumbens core (AcbC) is a key brain region known to regulate the discriminative stimulus/interoceptive effects of alcohol. As such, the goal of the present work was to identify AcbC projection regions that may also modulate sensitivity to alcohol. Accordingly, AcbC afferent projections were identified in behaviorally naïve rats using a retrograde tracer which led to the focus on the medial prefrontal cortex (mPFC), insular cortex (IC) and rhomboid thalamic nucleus (Rh). Next, to examine the possible role of these brain regions in modulating sensitivity to alcohol, neuronal response to alcohol in rats trained to discriminate alcohol (1 g/kg, intragastric [IG]) vs. water was examined using a two-lever drug discrimination task. As such, rats were administered water or alcohol (1 g/kg, IG) and brain tissue was processed for c-Fos immunoreactivity (IR), a marker of neuronal activity. Alcohol decreased c-Fos IR in the mPFC, IC, Rh and AcbC. Lastly, site-specific pharmacological inactivation with muscimol + baclofen (GABAA agonist + GABAB agonist) was used to determine the functional role of the mPFC, IC and Rh in modulating the interoceptive effects of alcohol in rats trained to discriminate alcohol (1 g/kg, IG) vs. water. mPFC inactivation resulted in full substitution for the alcohol training dose, and IC and Rh inactivation produced partial alcohol-like effects, demonstrating the importance of these regions, with known projections to the AcbC, in modulating sensitivity to alcohol. Together, these data demonstrate a site of action of alcohol and the recruitment of cortical/thalamic regions in modulating sensitivity to the interoceptive effects of alcohol.


Asunto(s)
Conducta Animal/efectos de los fármacos , Etanol/farmacología , Muscimol/farmacología , Tálamo/efectos de los fármacos , Animales , Aprendizaje Discriminativo/efectos de los fármacos , Aprendizaje Discriminativo/fisiología , Masculino , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Long-Evans , Tálamo/metabolismo
11.
J Neurosci ; 34(17): 5824-34, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24760842

RESUMEN

Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.


Asunto(s)
Alcoholes/administración & dosificación , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Condicionamiento Operante/fisiología , Etanol/administración & dosificación , Pregnanolona/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Condicionamiento Operante/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ratas , Ratas Wistar , Autoadministración , Área Tegmental Ventral/efectos de los fármacos
12.
Curr Protoc ; 4(1): e967, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38193654

RESUMEN

Animal models utilizing predator odor stress are important in understanding implications for post-traumatic stress disorder. 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) has been used to measure stress reactive behaviors during TMT exposure, indicative of stress coping behaviors. In addition, long-term consequences of stress including contextual-induced stress memory, anxiety-like and hyperarousal behaviors, and subsequent increases in alcohol self-administration can also be examined after TMT exposure. In this article, we describe the TMT exposure protocol used in our lab and how we measure different stress-reactive behaviors that rats engage in during the TMT exposure. Rats are placed in Plexiglass chambers that contain white bedding on the bottom of the chamber and a metal basket in the top right corner containing a filter paper that 10 µl of TMT is pipetted onto. During the 10 min exposure, rats can move around the chamber freely. Exposures are recorded by a video camera for later analysis. During TMT exposure, rats engage in a variety of stress-reactive behaviors, including digging and immobility behavior. These are two distinctly different types of stress-induced behavioral coping strategies to measure individual differences in stress responsivity. To examine individual differences, we group rats into TMT-subgroups based on time spent engaging in digging or immobility behavior. We calculate a digging/immobility ratio score in which we divide the total time spent digging by the total time spent immobile. A cut-off strategy is used such that rats with a criterion ratio score <1.0 are classified as TMT-1 (i.e., low digging/high immobility; greater passive coping) and rats with a ratio score >1.0 are classified as TMT-2 (i.e., high digging/low immobility; greater active coping). Here, we provide a detailed description of the TMT exposure protocol and step-by-step process in evaluation of stress-reactive behaviors. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Predator odor stressor exposure using TMT Basic Protocol 2: Description of stress-reactive behaviors during TMT exposure and formation of TMT-subgroups.


Asunto(s)
Habilidades de Afrontamiento , Odorantes , Animales , Ratas , Modelos Animales , Ansiedad
13.
Neurobiol Stress ; 30: 100634, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38623398

RESUMEN

Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are highly comorbid and individual differences in response to stress suggest resilient and susceptible populations. Using animal models to target neurobiological mechanisms associated with individual variability in stress coping responses and the relationship with subsequent increases in alcohol consumption has important implications for the field of traumatic stress and alcohol disorders. The current review discusses the unique advantages of utilizing predator odor stressor exposure models, specifically using 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) on better understanding PTSD pathophysiology and neurobiological mechanisms associated with stress reactivity and subsequent increases in alcohol drinking. Furthermore, there has been increasing interest regarding the role of the endocannabinoid system in modulating behavioral responses to stress with an emphasis on stress coping and individual differences in stress-susceptibility. Therefore, the current review focuses on the topic of endocannabinoid modulation of stress reactive behaviors during and after exposure to a predator odor stressor, with implications on modulating distinctly different behavioral coping strategies.

14.
Pharmacol Biochem Behav ; 239: 173767, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608960

RESUMEN

RATIONALE: The subjective effects of alcohol are associated with alcohol use disorder (AUD) vulnerability and treatment outcomes. The interoceptive effects of alcohol are part of these subjective effects and can be measured in animal models using drug discrimination procedures. The newly developed mGlu2 and mGlu3 negative allosteric modulators (NAMs) are potential therapeutics for AUD and may alter interoceptive sensitivity to alcohol. OBJECTIVES: To determine the effects of mGlu2 and mGlu3 NAMs on the interoceptive effects of alcohol in rats. METHODS: Long-Evans rats were trained to discriminate the interoceptive stimulus effects of alcohol (2.0 g/kg, i.g.) from water using both operant (males only) and Pavlovian (male and female) drug discrimination techniques. Following acquisition training, an alcohol dose-response (0, 0.5, 1.0, 2.0 g/kg) experiment was conducted to confirm stimulus control over behavior. Next, to test the involvement of mGlu2 and mGlu3, rats were pretreated with the mGlu2-NAM (VU6001966; 0, 3, 6, 12 mg/kg, i.p.) or the mGlu3-NAM (VU6010572; 0, 3, 6, 12 mg/kg, i.p.) before alcohol administration (2.0 g/kg, i.g.). RESULTS: In Pavlovian discrimination, male rats showed greater interoceptive sensitivity to 1.0 and 2.0 g/kg alcohol compared to female rats. Both mGlu2-NAM and mGlu3-NAM attenuated the interoceptive effects of alcohol in male and female rats using Pavlovian and operant discrimination. There may be a potential sex difference in response to the mGlu2-NAM at the highest dose tested. CONCLUSIONS: Male rats may be more sensitive to the interoceptive effects of the 2.0 g/kg alcohol training dose compared to female rats. Both mGlu2-and mGlu3-NAM attenuate the interoceptive effects of alcohol in male and female rats. These drugs may have potential for treatment of AUD in part by blunting the subjective effects of alcohol.


Asunto(s)
Etanol , Receptores de Glutamato Metabotrópico , Animales , Femenino , Masculino , Ratas , Regulación Alostérica/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Etanol/farmacología , Etanol/administración & dosificación , Interocepción/efectos de los fármacos , Ratas Long-Evans , Receptores de Glutamato Metabotrópico/metabolismo
15.
Neurotoxicol Teratol ; 102: 107341, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38490565

RESUMEN

Prenatal exposure to alcohol or cannabinoids can produce enduring neurobiological, cognitive, and behavioral changes in the offspring. Furthermore, prenatal co-exposure to alcohol and cannabinoids induces malformations in brain regions associated with reward and stress-related circuitry. This study examined the effects of co-exposure to alcohol and the synthetic cannabinoid (SCB) CP55,940 throughout gastrulation and neurulation in rats on basal corticosterone levels and a battery of behavioral tests during adolescence and alcohol self-administration in adulthood. Importantly, we find that prenatal alcohol exposure (PAE) caused lower baseline corticosterone levels in adolescent males and females. Co-exposure to alcohol + CP produced hyperactivity during open field test in males, but not females. During the two-bottle choice alcohol-drinking procedure, prenatal cannabinoid exposed male and female adolescent rats drank more alcohol than their vehicle-exposed controls. In adulthood, female rats treated with prenatal cannabinoid exposure (PCE), showed an overall total increase in alcohol intake during alcohol self-administration; but this was not found in males. When the reinforcer was changed to a 1% sucrose solution, male rats exposed to PCE, showed a reduced self-administration compared to vehicle-exposed males, potentially indicative of an anhedonic response. This lower self-administration persisted when 20% alcohol was reintroduced to the sucrose solution. Lastly, following an abstinence period, there were no changes due to prenatal drug exposure in either males or females. Overall, these data suggest lasting consequences of prenatal alcohol and cannabinoid exposure during adolescence and adulthood in male and female rats.


Asunto(s)
Cannabinoides , Efectos Tardíos de la Exposición Prenatal , Humanos , Ratas , Femenino , Masculino , Animales , Embarazo , Corticosterona , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Etanol/farmacología , Sacarosa
16.
bioRxiv ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38645173

RESUMEN

Alcohol use disorders (AUDs) impose an enormous societal and financial burden, and world-wide, alcohol misuse is the 7th leading cause of premature death1. Despite this, there are currently only 3 FDA approved pharmacological treatments for the treatment of AUDs in the United States. The neurotensin (Nts) system has long been implicated in modulating behaviors associated with alcohol misuse. Recently, a novel compound, SBI-553, that biases the action of Nts receptor 1 (NTSR1) activation, has shown promise in preclinical models of psychostimulant misuse. Here we investigate the efficacy of this compound to alter ethanol-mediated behaviors in a comprehensive battery of experiments assessing ethanol consumption, behavioral responses to ethanol, sensitivity to ethanol, and ethanol metabolism. Additionally, we investigated behavior in avoidance and cognitive assays to monitor potential side effects of SBI-553. We find that SBI-553 reduces binge-like ethanol consumption in mice without altering avoidance behavior or novel object recognition. We also observe sex-dependent differences in physiological responses to sequential ethanol injections in mice. In rats, we show that SBI-553 attenuates sensitivity to the interoceptive effects of ethanol (using a Pavlovian drug discrimination task). Our data suggest that targeting NTSR1 signaling may be promising to attenuate alcohol misuse, and adds to a body of literature that suggests NTSR1 may be a common downstream target involved in the psychoactive effects of multiple reinforcing substances.

17.
Addict Biol ; 18(1): 54-65, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23126443

RESUMEN

Long-term alcohol exposure produces neuroadaptations that contribute to the progression of alcohol abuse disorders. Chronic alcohol consumption results in strengthened excitatory neurotransmission and increased α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPA) receptor signaling in animal models. However, the mechanistic role of enhanced AMPA receptor activity in alcohol-reinforcement and alcohol-seeking behavior remains unclear. This study examined the role of enhanced AMPA receptor function using the selective positive allosteric modulator, aniracetam, in modulating operant alcohol self-administration and cue-induced reinstatement. Male alcohol-preferring (P-) rats, trained to self-administer alcohol (15%, v/v) versus water were pre-treated with aniracetam to assess effects on maintenance of alcohol self-administration. To determine reinforcer specificity, P-rats were trained to self-administer sucrose (0.8%, w/v) versus water, and effects of aniracetam were tested. The role of aniracetam in modulating relapse of alcohol-seeking was assessed using a response contingent cue-induced reinstatement procedure in P-rats trained to self-administer 15% alcohol. Aniracetam pre-treatment significantly increased alcohol-reinforced responses relative to vehicle treatment. This increase was not attributed to aniracetam-induced hyperactivity as aniracetam pre-treatment did not alter locomotor activity. AMPA receptor involvement was confirmed because 6,7-dinitroquinoxaline-2,3-dione (AMPA receptor antagonist) blocked the aniracetam-induced increase in alcohol self-administration. Aniracetam did not alter sucrose-reinforced responses in sucrose-trained P-rats, suggesting that enhanced AMPA receptor activity is selective in modulating the reinforcing function of alcohol. Finally, aniracetam pre-treatment potentiated cue-induced reinstatement of alcohol-seeking behavior versus vehicle-treated P-rats. These data suggest that enhanced glutamate activity at AMPA receptors may be key in facilitating alcohol consumption and seeking behavior, which could ultimately contribute to the development of alcohol abuse disorders.


Asunto(s)
Consumo de Bebidas Alcohólicas , Alcoholismo/metabolismo , Etanol/administración & dosificación , Glutamatos/metabolismo , Receptores AMPA/fisiología , Análisis de Varianza , Animales , Condicionamiento Operante/efectos de los fármacos , Señales (Psicología) , Modelos Animales de Enfermedad , Etanol/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Modelos Lineales , Masculino , Actividad Motora/efectos de los fármacos , Nootrópicos/farmacología , Pirrolidinonas/farmacología , Quinoxalinas/farmacología , Ratas , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/efectos de los fármacos , Recurrencia , Refuerzo en Psicología , Autoadministración , Sacarosa/administración & dosificación
18.
Behav Brain Res ; 438: 114200, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36334783

RESUMEN

There are many unanswered questions about the interaction between the immune system and behavior change, including the contributions of individual differences. The present study modeled individual differences in the immune system by comparing inbred Lewis rats, which have dysregulated stress and immune systems, to their genetically diverse parent strain, Wistar rats. The objective was to examine the consequences of an immune challenge on behavior and neuroimmune signaling in both strains. Peripheral administration of the toll-like receptor 3 (TLR3) agonist and viral memetic polyinosinic-polycytidylic acid (poly(I:C)) induced behavior changes in both strains, reducing locomotor activity and increasing avoidance behavior (time on the dark side of the light-dark box). Furthermore, poly(I:C) induced hyperarousal and increased avoidance behavior more in female Lewis than female Wistar rats. Baseline strain differences were also observed: Lewis rats had higher avoidance behavior and lower startle response than Wistars. Lewis rats also had lower levels of peripheral inflammation, as measured by spleen weight. Finally, poly(I:C) increased expression of genes in the TLR3 pathway, cytokine genes, and CD11b, a gene associated with proinflammatory actions of microglia, in the prelimbic cortex and central amygdala, with greater expression of cytokine genes in male rats. Lewis rats had lower baseline expression of some neuroimmune genes, particularly CD11b. Overall, we found constitutive strain differences in immune profiles and baseline differences in behavior, yet poly(I:C) generally induced similar behavior changes in males while hyperarousal and avoidance behavior were heightened in female Lewis rats.


Asunto(s)
Poli I-C , Receptor Toll-Like 3 , Animales , Femenino , Masculino , Ratas , Citocinas/metabolismo , Poli I-C/farmacología , Ratas Endogámicas Lew , Ratas Wistar , Receptor Toll-Like 3/metabolismo
19.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873078

RESUMEN

Prenatal exposure to alcohol or cannabinoids can produce enduring neurobiological, cognitive, and behavioral changes in the offspring. Furthermore, prenatal co-exposure to alcohol and cannabinoids induces malformations in brain regions associated with reward and stress-related circuitry. This study examined the effects of co-exposure to alcohol and the synthetic cannabinoid (SCB) CP55,940 throughout gastrulation and neurulation in rats on basal corticosterone levels and a battery of behavioral tests during adolescence and alcohol self-administration in adulthood. Importantly, we find that prenatal alcohol exposure (PAE) caused lower baseline corticosterone levels in adolescent males and females. Co-exposure to alcohol + CP produced hyperactivity during open field test in males, but not females. During the two-bottle choice alcohol-drinking procedure, prenatal cannabinoid exposed male and female adolescent rats drank more alcohol than their vehicle-exposed controls. In adulthood, female rats treated with prenatal cannabinoid exposure (PCE), showed an overall total increase in alcohol intake during alcohol self-administration; but this was not found in males. When the reinforcer was changed to a 1% sucrose solution, male rats exposed to PCE, showed a reduced self-administration compared to vehicle-exposed males, potentially indicative of an anhedonic response. This lower self-administration persisted when 20% alcohol was reintroduced to the sucrose solution. Lastly, following an abstinence period, there were no changes due to prenatal drug exposure in either males or females. Overall, these data suggest lasting consequences of prenatal alcohol and cannabinoid exposure during adolescence and adulthood in male and female rats.

20.
Alcohol Clin Exp Res (Hoboken) ; 47(3): 459-469, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36587947

RESUMEN

BACKGROUND: Alcohol affects multiple circuits in the brain, mainly disrupting the delicate balance between inhibitory γ-aminobutyric acid (GABA) transmission and excitatory glutamate signaling in brain areas involved in reward circuits. These include the amygdala, nucleus accumbens (Acb), and ventral tegmental area (VTA). This action impairs circuits that regulate behavioral control of craving and alcohol seeking and intake. Studies in both rodent models and postmortem human brain of patients with alcohol use disorder (AUD) have highlighted the association between the loss of GABAergic inhibition and the development of addiction. The neurosteroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) is a potent positive modulator of GABAA receptors. Chronic alcohol consumption reduces 3α,5α-THP levels, resulting in decreased GABA inhibition. We previously demonstrated that enhancing neurosteroid biosynthesis by overexpression of the cholesterol side-chain cleavage enzyme P450scc decreased alcohol intake in male alcohol-preferring rats (P-rats). While most of the evidence of alcohol-induced alterations comes from studies in male subjects, some data show that females are more vulnerable to alcohol's effects than males. METHODS: In this study, we investigated the ability of 3α,5α-THP direct infusions in two brain regions that contribute to alcohol reinforcement, the VTA and Acb core (AcbC), to regulate alcohol self-administration in female P-rats. RESULTS: Administration of 3α,5α-THP into the AcbC increased 3α,5α-THP-positive cell expression in this area and reduced alcohol self-administration. By contrast, 3α,5α-THP infusion into the VTA did not significantly affect alcohol self-administration, though trends for a reduction were found. CONCLUSIONS: Our results show that local increases in 3α,5α-THP in the AcbC may alter mesolimbic activity that drives a reduction in alcohol self-administration.


Asunto(s)
Neuroesteroides , Núcleo Accumbens , Humanos , Ratas , Masculino , Femenino , Animales , Núcleo Accumbens/metabolismo , Neuroesteroides/metabolismo , Neuroesteroides/farmacología , Etanol , Encéfalo , Pregnanolona/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda