Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mol Cell Proteomics ; 23(5): 100747, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490531

RESUMEN

Although immune tolerance evolved to reduce reactivity with self, it creates a gap in the adaptive immune response against microbes that decorate themselves in self-like antigens. This is particularly apparent with carbohydrate-based blood group antigens, wherein microbes can envelope themselves in blood group structures similar to human cells. In this study, we demonstrate that the innate immune lectin, galectin-4 (Gal-4), exhibits strain-specific binding and killing behavior towards microbes that display blood group-like antigens. Examination of binding preferences using a combination of microarrays populated with ABO(H) glycans and a variety of microbial strains, including those that express blood group-like antigens, demonstrated that Gal-4 binds mammalian and microbial antigens that have features of blood group and mammalian-like structures. Although Gal-4 was thought to exist as a monomer that achieves functional bivalency through its two linked carbohydrate recognition domains, our data demonstrate that Gal-4 forms dimers and that differences in the intrinsic ability of each domain to dimerize likely influences binding affinity. While each Gal-4 domain exhibited blood group-binding activity, the C-terminal domain (Gal-4C) exhibited dimeric properties, while the N-terminal domain (Gal-4N) failed to similarly display dimeric activity. Gal-4C not only exhibited the ability to dimerize but also possessed higher affinity toward ABO(H) blood group antigens and microbes expressing glycans with blood group-like features. Furthermore, when compared to Gal-4N, Gal-4C exhibited more potent antimicrobial activity. Even in the context of the full-length protein, where Gal-4N is functionally bivalent by virtue of Gal-4C dimerization, Gal-4C continued to display higher antimicrobial activity. These results demonstrate that Gal-4 exists as a dimer and exhibits its antimicrobial activity primarily through its C-terminal domain. In doing so, these data provide important insight into key features of Gal-4 responsible for its innate immune activity against molecular mimicry.


Asunto(s)
Galectina 4 , Humanos , Galectina 4/metabolismo , Dominios Proteicos , Unión Proteica , Multimerización de Proteína , Antígenos de Grupos Sanguíneos/metabolismo , Escherichia coli/metabolismo , Antiinfecciosos/farmacología , Sistema del Grupo Sanguíneo ABO/metabolismo , Sistema del Grupo Sanguíneo ABO/inmunología
2.
J Evol Biol ; 31(9): 1420-1426, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29927015

RESUMEN

Environmental variability is on the rise in different parts of the earth, and the survival of many species depends on how well they cope with these fluctuations. Our current understanding of how organisms adapt to unpredictably fluctuating environments is almost entirely based on studies that investigate fluctuations among different values of a single environmental stressor such as temperature or pH. How would unpredictability affect adaptation when the environment fluctuates between qualitatively very different kinds of stresses? To answer this question, we subjected laboratory populations of Escherichia coli to selection over ~ 260 generations. The populations faced predictable and unpredictable environmental fluctuations across qualitatively different selection environments, namely, salt and acidic pH. We show that predictability of environmental fluctuations does not play a role in determining the extent of adaptation, although the extent of ancestral adaptation to the chosen selection environments is of key importance.


Asunto(s)
Adaptación Fisiológica/genética , Ambiente , Escherichia coli/genética , Escherichia coli/fisiología , Aptitud Genética , Concentración de Iones de Hidrógeno , Cloruro de Sodio
3.
Genes (Basel) ; 13(1)2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-35052392

RESUMEN

Comparative genomic analyses have provided evidence that new genetic functions can emerge out of random nucleotide sequences. Here, we apply a direct experimental approach to study the effects of plasmids harboring random sequence inserts under the control of an inducible promoter. Based on data from previously described experiments dealing with the growth of clones within whole libraries, we extracted specific clones that had shown either negative, neutral or positive effects on relative cell growth. We analyzed these individually with respect to growth characteristics and the impact on the transcriptome. We find that candidate clones for negative peptides lead to growth arrest by eliciting a general stress response. Overexpression of positive clones, on the other hand, does not change the exponential growth rates of hosts, and they show a growth advantage over a neutral clone when tested in direct competition experiments. Transcriptomic changes in positive clones are relatively moderate and specific to each clone. We conclude from our experiments that random sequence peptides are indeed a suitable source for the de novo evolution of genetic functions.


Asunto(s)
Células Clonales/metabolismo , Infecciones por Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Mutación , Transcriptoma , Células Clonales/microbiología , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Plásmidos , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda