Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Environ Sci Technol ; 56(23): 16907-16918, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36354282

RESUMEN

Microplastics (MPs) can enter plants through the foliar pathway and are potential hazards to ecosystems and human health. However, studies related to the molecular mechanisms underlying the impact of foliar exposure to differently charged MPs to leafy vegetables are limited. Because the surfaces of MPs in the environment are often charged, we explored the uptake pathways, accumulation concentration of MPs, physiological responses, and molecular mechanisms of lettuce foliarly exposed to MPs carrying positive (MP+) and negative charges (MP-). MPs largely accumulated in the lettuce leaves, and stomatal uptake and cuticle entry could be the main pathways for MPs to get inside lettuce leaves. More MP+ entered lettuce leaves and induced physiological, transcriptomic, and metabolomic changes, including a decrease in biomass and photosynthetic pigments, an increase in reactive oxygen species and antioxidant activities, a differential expression of genes, and a change of metabolite profiles. In particular, MP+ caused the upregulation of circadian rhythm-related genes, and this may play a major role in the greater physiological toxicity of MP+ to lettuce, compared to MP-. These findings provide direct evidence that MPs can enter plant leaves following foliar exposure and a molecular-scale perspective on the response of leafy vegetables to differently charged MPs.


Asunto(s)
Lactuca , Microplásticos , Humanos , Plásticos , Transcriptoma , Ecosistema , Verduras
2.
Bull Environ Contam Toxicol ; 109(4): 592-599, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35635563

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil contaminants, and their bioaccessibility determines their environmental risks in contaminated land. In the present study, the residual concentrations of PAHs in the soils of two industrial sites were determined, and their bioaccessibility was estimated by the hydroxypropyl-ß-cyclodextrin extraction (HPCD) extraction method. The results showed heavy PAH contamination at both site S1 (0.38-3342.5 mg kg-1) and site S2 (0.2-138.18 mg kg-1), of which high molecular weight (HMW) PAHs (4-, 5-, and 6-ring compounds) accounted for approximately 80%. The average bioaccessibility of PAHs at sites S1 and S2 was 52.02% and 29.28%, respectively. The bioaccessibility of certain PAH compounds decreased with increasing ring number of the molecule. Lower PAH bioaccessibility was detected in loamy and silty soil textures than in sandy soil. Moreover, among the soil properties, the dissolved organic matter, total organic carbon, total potassium, and total manganese concentrations had significant effects on the bioaccessibility of PAHs. The toxicity analysis showed that the composition and bioaccessibility of PAHs could affect their potential toxicity in soil. We suggest that bioaccessibility should be taken into consideration when assessing the toxicity of PAHs in soil, and more attention should be given to low-ring PAHs with high bioaccessibility.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , 2-Hidroxipropil-beta-Ciclodextrina , Carbono , Manganeso/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Potasio/análisis , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
3.
Environ Sci Technol ; 55(24): 16369-16378, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34695355

RESUMEN

The global prevalence of antibiotic resistance genes (ARGs) is of increasing concern as a serious threat to ecological security and human health. Irrigation with sewage and farmland application of manure or biosolids in agricultural practices introduce substantial selective agents such as antibiotics and toxic metals, aggravating the transfer of ARGs from the soil environment to humans via the food chain. To address this issue, a hyperaccumulator (Sedum plumbizincicola) combined with biochar amendment was first used to investigate the mitigation of the prevalence of ARGs in cadmium and oxytetracycline co-contaminated soil by conducting a pot experiment. The addition of biochar affected the distribution of ARGs in soil and plants differently by enhancing their prevalence in the soil but restraining transmission from the soil to S. plumbizincicola. The planting of S. plumbizincicola resulted in an increase in ARGs in the soil environment. A structural equation model illustrated that mobile genetic elements played a dominant role in shaping the profile of ARGs. Taken together, these findings provide a practical understanding for mitigating the prevalence of ARGs in this soil system with complex contamination and can have profound significance for agricultural management in regard to ARG dissemination control.


Asunto(s)
Oxitetraciclina , Antibacterianos/farmacología , Biodegradación Ambiental , Cadmio , Carbón Orgánico , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Humanos , Estiércol , Suelo , Microbiología del Suelo
4.
Environ Sci Technol ; 55(6): 3676-3685, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33625846

RESUMEN

Plastic films have become an integral part of fruit and vegetable production systems, but their release of phthalate acid esters (PAEs) is a threat to human health. The release kinetics of PAEs and measures of risk are still not well understood. We investigated 50 agricultural films, with concentrations ranging from 2.59 to 282,000 mg kg-1. The seven commercially available film types included were polyvinylchloride (PVC), metallocene polyethylene (mPE), ethylene vinyl acetate (EVA), polyolefin (PO), and three mulch films. Bis(2-ethylhexyl) phthalate (DEHP) was detected in most of films, and its release fitted well into the first-order kinetic model. The release rate of DEHP was negatively related to the film thickness. The potential carcinogenic risks of DEHP in the air of six kinds of plastic greenhouses to human health were estimated. We found that the carcinogenic risks associated with PVC and mPE greenhouse films warrant greater attention. Though EVA, PO greenhouse, and mulch films were lower risk, we advise keeping plastic greenhouses well ventilated during the first month of use to reduce direct human exposure to volatile PAEs.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Contaminantes del Suelo , China , Dibutil Ftalato , Ésteres , Humanos , Cinética , Plásticos , Medición de Riesgo , Contaminantes del Suelo/análisis
5.
Ecotoxicol Environ Saf ; 223: 112559, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34333384

RESUMEN

Phthalic acid esters (PAEs) are a group of widespread persistent organic pollutants in the environment. Though the harmful effect of PAEs including activity inhibition of superoxide dismutase (SOD) to arouse oxidative stress were well documented, the deep insights into mechanisms that are relevant with SOD activity are still lacking. By 7d-cultivation of Eisenia fetida in artificially-polluted soil, the different active responses of SOD in earthworm were shown to PAE congeners. Despite the less bioaccumulation and bioavailability, the di-butyl phthalate (DBP) etc. structurally coupled with longer ester-chains appeared more effective to trigger the up-regulation and then the slight decline of SOD activity. Given the remarkable biotransformation especially for short-chain PAEs, the SOD activity response in earthworm should be regarded as joint effect with their metabolites, e.g. monophthalates (MAEs) and phthalic acid (PA). The in vitro SOD activity was shown with the obvious inhibition of 21.31% by DBP, 88.93% by MBP, and 58.57% by PA respectively when the concentrations were elevated up to 0.03 mM. The SOD activity inhibition confirmed the molecular binding with pollutants as an essential event besides the biological regulation for activity. The binding interaction was thermodynamically exothermic, spontaneous and strengthened primarily by Van der Waals force and hydrogen bonds, and was spectrally diagnosed with the conformational changes including diminution of α-helix content and spatial reorientation of fluorophore tryptophan. As coherently illustrated with the larger fluorescence quenching constants (3.65*104-4.47*104/mol) than DBP, the metabolites should be the priority concern due to stronger activity inhibition and toxicological risks.


Asunto(s)
Oligoquetos , Ácidos Ftálicos , Contaminantes del Suelo , Animales , Dibutil Ftalato/toxicidad , Ésteres , Ácidos Ftálicos/toxicidad , Contaminantes del Suelo/toxicidad , Superóxido Dismutasa
6.
J Environ Manage ; 293: 112912, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34089954

RESUMEN

Biochar has been deemed one of the most promising sorbents for the removal of organic pollutants from aqueous solution. In this study, potassium hydroxide-modified Enteromorpha prolifera biochars (PEBCs) were prepared for the first time and applied for efficient sorption of a typical antibiotic, sulfamethoxazole (SMX). The characteristics of PEBCs, including morphology, pore structure, graphitization degree, surface functional groups, and surface element composition, were investigated. Moreover, sorption kinetic and isotherm experiments were carried out to explore the sorption process, performance, and mechanisms. The maximum sorption capacity for SMX can reach 744 mg g-1, which is much higher than that reported for sorbents. The sorption of SMX onto PEBCs was controlled by both physical and chemical processes. Moreover, pore filling, hydrogen bonding, partitioning, π-π stacking, and electrostatic interactions were possible sorption mechanisms. This study indicated that the structure and properties of algal biochar can be further improved by potassium hydroxide modification at high temperature and applied as an excellent sorbent for the removal of antibiotics from aqueous solution.


Asunto(s)
Sulfametoxazol , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Hidróxidos , Compuestos de Potasio , Contaminantes Químicos del Agua/análisis
7.
Environ Res ; 179(Pt B): 108838, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31678730

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) which are structurally featured with one or more aromatic skeletons are often regarded as two important groups of organic pollutants due to the widespread distribution and notorious toxic effects in soils. Relative to the great number of structural analogues or congeners detected in soil, however, the soil adsorption and bioaccumulation of PAHs/PAEs by plant is far less studied for the insufficiency of experimental determinations or lack of insights into the inherent structural requirements. To mechanistically evaluate the congener-specific soil adsorption and bioaccumulation for PAHs/PAEs, the quantitative structure-activity relationships (QSARs) were successfully developed by density functional theory (DFT) computation and partial least squares (PLS) analysis. As verified with the higher cumulative variance coefficients and cross-validated correlation coefficients for strong stability, interpretability and predictability, the QSARs could be used for prediction of unknown adsorption potency or bioavailability within the specified applicability domain, respectively. It was indicated by QSAR that the structural requirements of PAHs/PAEs necessary for strengthening the soil adsorption were mainly attributed to the molecular polarizability and the associated dispersion interaction with soil. As regards the bioaccumulation by carrot, the aggravation of spherical polarity change of molecules and the involved electrostatic interaction with soil entity or electron transfer from the highest occupied molecular orbital (HOMO) of PAHs/PAEs was implied to be inherently decisive for the variance of bioavailability among congeners. Based on the holistic view of negative correlation relationship, the soil adsorption seemed to act as the forceful constraint in decreasing the bioaccumulation of PAHs/PAEs and could also be alternatively gauged as the preliminary evaluation of bioavailability and risks on soil ecosystem. It would thus help better understand the soil adsorption and bioaccumulation with the informative mechanistic insights and provide data support for ecological risk assessment of PAHs/PAEs in soils.


Asunto(s)
Ácidos Ftálicos/química , Hidrocarburos Policíclicos Aromáticos/química , Relación Estructura-Actividad Cuantitativa , Contaminantes del Suelo/química , Adsorción , Bioacumulación , Ecosistema , Ácidos Ftálicos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo , Contaminantes del Suelo/análisis
8.
Bull Environ Contam Toxicol ; 103(4): 642-650, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31428843

RESUMEN

In this study, the responses of soil bacterial communities to biochar amendment in different soils were investigated. Biochar amendment had not significantly changed the bacterial richness and diversity in black soil, fluvo-aquic soil and red soil, but shifted all the soil bacterial community structures. Biochar amendment mainly increased the growth of low-abundance bacteria in fluvo-aquic soil and that of high-abundance bacteria in red soil. The most abundant bacterial phylum in black soil and fluvo-aquic soil, Proteobacteria, increased after biochar addition, while Chloroflexi, the most abundant phylum in red soil, decreased after biochar addition. Some bacterial phyla responded consistently to biochar amendment. However, many more bacterial phyla responded differently to biochar amendment in different soils, especially those phyla present at low abundances. Therefore, our study confirmed that the responses of soil bacterial communities to the same biochar were specific to both soil type and bacterial phylum.


Asunto(s)
Carbón Orgánico , Microbiología del Suelo , Bacterias , Microbiota , Suelo/química , Contaminantes del Suelo/análisis
9.
Bull Environ Contam Toxicol ; 103(1): 23-27, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30666386

RESUMEN

Polybrominated diphenyl ethers (PBDEs) derived from e-waste dismantling, tend to easily bioaccumulate in vegetables. In this study, an optimized sample pretreatment method based on graphene oxide (GO) dispersed acid silica gel was used to determine PBDEs levels in vegetables. The recovery efficiency of the optimized method ranged between 90.3%-107.5% with the detection limit (LOD) being within 0.17-1.8 ng g-1. Vegetable samples were grown nearby an e-waste recycling plant in Nanjing, China, and analyzed using the optimized method. The concentrations of ΣPBDEs in the samples ranged from 12.1 to 20.1 ng g-1. This study developed an optimized sample pretreatment method to determine PBDEs in vegetables nearby e-waste contaminated sites and provides insights on the potential risks derived from e-waste dismantling to the surrounding environment.


Asunto(s)
Residuos Electrónicos/análisis , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Grafito/química , Éteres Difenilos Halogenados/análisis , Verduras/química , China , Óxidos , Plantas , Reciclaje , Gel de Sílice
10.
J Environ Manage ; 213: 513-519, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29277355

RESUMEN

This is the first study investigating the effect of cationic surfactants on the mobility of polycyclic aromatic hydrocarbons (PAHs) in aged contaminated soils and on PAH bioaccumulation in tuberous vegetables. In an aerobic soil incubation experiment, 150 mg/kg cetyltrimethyl ammonium bromide (CTMAB) decreased the bioavailability of PAHs primarily via immobilization (by 13%). In a carrot pot experiment, the effectiveness of CTMAB to reduce PAH uptake by carrots decreased with time. Accordingly, the bioavailability of PAHs in the soil decreased in the first 90 days and then increased and remained stable until harvest. In the leaching test, the leaching loss of CTMAB (15%) was lower in soils treated with small amounts of CTMAB in several applications than it was in soils (24%) treated once with CTMAB. Therefore, CTMAB, when applied in appropriate doses via addition methods, can effectively reduce the environmental risk of PAH entering humans and livestock through the food chain.


Asunto(s)
Bromuros/química , Daucus carota , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Compuestos de Amonio Cuaternario/química , Humanos , Hidrocarburos Policíclicos Aromáticos/química , Suelo , Contaminantes del Suelo
11.
J Environ Sci (China) ; 63: 296-306, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29406113

RESUMEN

The immobilization of co-contaminants of organic and inorganic pollutants by biochar is an efficient remediation strategy. However, the effect of biochar amendments on the bioaccessibility of the co-contaminants in dry versus flooded soils has rarely been compared. In batch experiments, bamboo-derived biochar (BB) had a higher sorption capacity for phenanthrene (Phe)/pyrene (Pyr)/zinc (Zn) than corn straw-derived biochar (CB), while CB had a higher sorption capacity for lead (Pb) than BB. After 150days of incubation, the amendments of 2% CB, 0.5% BB and 2% BB effectively suppressed the dissipation and reduced the bioaccessibility of Phe/Pyr by 15.65%/18.02%, 17.07%/18.31% and 25.43%/27.11%, respectively, in the aerobic soils. This effectiveness was more significant than that in the anaerobic soils. The accessible Zn/Pb concentrations were also significantly lower in the aerobic soils than in the anaerobic soils, regardless of treatments. The Gram-negative bacterial biomass and the Shannon-Weaver index in the aerobic soil amended with 2% CB were the highest. The soil microbial community structure was jointly affected by changes in the bioaccessibility of the co-contaminants and the soil physiochemical properties caused by biochar amendments under the two conditions. Therefore, dry land farming may be more reliable than paddy soil cultivation at reducing the bioaccessibility of Phe/Pyr/Zn/Pb and enhancing the soil microbial diversity in the short term.


Asunto(s)
Microbiología del Suelo , Contaminantes del Suelo/análisis , Carbón Orgánico , Plomo/análisis , Plomo/toxicidad , Fenantrenos/análisis , Fenantrenos/toxicidad , Pirenos , Suelo/química , Contaminantes del Suelo/toxicidad , Zinc/análisis , Zinc/toxicidad
12.
Mikrochim Acta ; 185(1): 56, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29594537

RESUMEN

A nanoporous carbon material was synthesized by heating potassium citrate without using a template or an activating agent. It is shown to represent a viable coating for use in solid-phase microextraction. The material is thermally stable and mainly consists of amorphous sheets of sp2-bonded carbon. It has an extensive pore structure and a surface area as large as 1236 m2·g-1. The nanoporous carbon was deposited on the surface of steel wires, and the resulting fibers were applied to the extraction of trace levels of chlorobenzenes in water samples. Following extraction by absorbing, the chlorobenzenes were quantified by gas chromatograph in combination with electron capture detection. Extraction temperature and time, and desorption temperature were optimized (80 °C, 10 min and 310 °C). Under optimized conditions, the calibration plots are linear in the following concentration ranges: 2.5 to 100 ng·L-1 (pentachlorobenzene), 5 to 200 ng·L-1 (1,2,3,4-tetrachlorobenzene), 10 to 100 ng·L-1 (hexachlorobenzene) and 10 to 500 ng·L-1 (1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene). Other figures of merit include (a) high enrichment factors (8324 to 9920), (b) low limits of detection (0.10-1.03 ng·L-1), and (c) good reproducibility (relative standard deviations including intra-day and inter-day with a single fiber and fiber-to-fiber were below 6.4% at a mixed concentration level of 2.5, 5, and 10 ng·L-1 respectively in ultra-water). This method was successfully applied to the determination of chlorobenzenes in (spiked) lake waters where it gave recoveries between 82.3% and 104.5%. Graphical abstract A nanoporous carbon material was synthesized by heating potassium citrate without using a template or an activating agent and used as a viable coating of solid-phase microextraction for chlorobenzenes.

13.
Proc Natl Acad Sci U S A ; 108(4): 1479-83, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21220311

RESUMEN

Mercuric Hg(II) species form complexes with natural dissolved organic matter (DOM) such as humic acid (HA), and this binding is known to affect the chemical and biological transformation and cycling of mercury in aquatic environments. Dissolved elemental mercury, Hg(0), is also widely observed in sediments and water. However, reactions between Hg(0) and DOM have rarely been studied in anoxic environments. Here, under anoxic dark conditions we show strong interactions between reduced HA and Hg(0) through thiolate ligand-induced oxidative complexation with an estimated binding capacity of ~3.5 µmol Hg/g HA and a partitioning coefficient >10(6) mL/g. We further demonstrate that Hg(II) can be effectively reduced to Hg(0) in the presence of as little as 0.2 mg/L reduced HA, whereas production of Hg(0) is inhibited by complexation as HA concentration increases. This dual role played by DOM in the reduction and complexation of mercury is likely widespread in anoxic sediments and water and can be expected to significantly influence the mercury species transformations and biological uptake that leads to the formation of toxic methylmercury.


Asunto(s)
Mercurio/química , Compuestos de Metilmercurio/química , Compuestos Orgánicos/química , Contaminantes Químicos del Agua/química , Anaerobiosis , Biodegradación Ambiental , Sustancias Húmicas , Mercurio/metabolismo , Compuestos de Metilmercurio/metabolismo , Modelos Químicos , Compuestos Orgánicos/metabolismo , Oxidación-Reducción , Shewanella putrefaciens/metabolismo , Contaminantes Químicos del Agua/metabolismo
14.
Sci Total Environ ; 930: 172802, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38679093

RESUMEN

In situ measurement of the bioavailability of organic pollutants in soil is crucial for understanding their environmental behavior and assessing health risks. Due to the high heterogeneity of soil, microscale determination is crucial for achieving high accuracy, but few methods are available. In this study, microsized probes coated with polydimethylsiloxane (PDMS) were used to measure the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soil in situ. The concentrations of PAHs enriched by the PDMS-coated probes correlated well with the results of bioassays using earthworms (R2 = 0.92-0.99) and ryegrass roots (R2 = 0.92-0.99). Compared with other chemical extraction methods, such as n-butanol extraction, the proposed method has advantages such as in situ operation, microvolume analysis, and negligible interference to the soil environment. In the soil rhizosphere zone, PAHs bioavailability decreased in the following order: rhizosphere > near-rhizosphere > far-rhizosphere. The bioavailability of PAHs in soil amended with biochar was also successfully characterized by the proposed method. Thus, this study developed an in situ and microscale method to predict the bioavailability of organic pollutants in contaminated soils and provides new insight into migration and transformation processes in rhizosphere soil.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Rizosfera , Contaminantes del Suelo , Suelo , Microextracción en Fase Sólida , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Microextracción en Fase Sólida/métodos , Suelo/química , Monitoreo del Ambiente/métodos , Disponibilidad Biológica , Animales , Lolium , Oligoquetos
15.
J Hazard Mater ; 474: 134734, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850937

RESUMEN

Fast and real-time detection of trace Hg(Ⅱ) by fluorescent probes under acidic conditions is urgently required due to the high toxicity and accessibility to creatures and human being. However, fluorescent probes for Hg(Ⅱ) detection in environmental samples are rarely reported due to the protonation potential of acidic mercury sources. In this study, the SD probe was developed by 5-(p-dimethylaminobenzylidene) rhodanine (DMABR) loaded on sepiolite by hydrothermal treatment, and showed excellent Hg(Ⅱ) detection performances for mercury sources at pH 4-10 due to buffering ability of the hyperconjugated lactam rings. Sepiolite functioned as the support skeleton to decrease intermolecular transition, and thus increased the sensitivity. At pH 4, the SD probe showed high selectivity and sensitivity for Hg(Ⅱ) among various species, with low LOD and binding constant of 4.78 × 10-9 M and 1.34 × 106 M-1, respectively. Through DFT calculations, MAS 1H NMR and 2D-COS analysis, the detection mechanism was demonstrated as SN1 substitution of the spontaneous leaving H on amino groups in the transient state during tautomeric equilibrium, rather than the expected high-affinity sulphydryl. Additionally, the SD probe exhibited promising potential in quantifying water-soluble and bioavailable Hg(Ⅱ) in acidic polluted soil and water samples. Moreover, real-time detection was realized by paper-based strips.

16.
Chemosphere ; 319: 138033, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36736478

RESUMEN

Bioavailability is recognized as a useful technical standard for risk assessment and pollution rehabilitation. However, knowledge on the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in contaminated site soils is still limited, especially concerning the influential mechanism. With an abundance of soil collections from nine industrial areas in China, the bioavailabilities, as conceptually defined as bioconcentration factors (BCFs) of PAHs were analyzed using biomimetic extraction of hydroxypropyl-ß-cyclodextrin (HPCD). Apart from the total content of PAHs varying with the different pyrogenic sources, the BCFs were greatly dependent on the soil physicochemical properties from the spatial scale and inversely proportional to the number of rings. Pearson correlation analysis indicated a weak relationship between bioavailability and the soil dissolved organic matter (DOM), pH and particle size. To incorporate the soil physicochemical properties and structural characteristics of PAHs determined by density functional theory (DFT), the optimum model for bioavailability was developed for BCFs by partial least square (PLS) analysis. The PLS-derived model was shown to be predictive within the applicability domain (AD). The structural characteristics, e.g., molecular polarizability and frontier orbital energy level that favor the soil adsorption of PAH isomers via dispersion interactions, and electron exchanges were indicated to be more impactful on bioavailability than soil environmental factors. However, soil factors should not be neglected, because the pH, DOM, etc. were significantly influential. It makes sense that the higher DOM causes greater bioavailability via increasing the free-dissolved fractions of PAHs. Interestingly, the effect of pH on bioavailability was spectrally validated by excitation-emission matrix (EEM) fluorescence, showing that the interaction between DOM and pyrene strengthened the fluorescence quenching of chromophores with the decline in pH.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Disponibilidad Biológica , Análisis de los Mínimos Cuadrados , Contaminantes del Suelo/análisis , Suelo/química
17.
Environ Int ; 171: 107712, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36577298

RESUMEN

Phthalic acid esters (PAEs) are an important group of organic pollutants that are widely used as plasticizers in the environment. The PAEs in soil organisms are likely to be biotransformed into a variety of metabolites, and the combined toxicity of PAEs and their metabolites might be more serious than PAEs alone. However, there are only a few studies on PAE biotransformation by terrestrial animals, e.g. earthworms. Herein, the key biotransformation pathways of PAEs and their association with catalytic enzymes and intestinal symbionts in earthworms were studied using in vivo and in vitro incubation approaches. The widely distributed PAE in soil, dibutyl phthalate (DBP), was proven to be biotransformed rapidly together with apparent bioaccumulation in earthworms. The biotransformation of PAE congeners with medium or long side chains appeared to be faster compared with those with short side chains. DBP was biotransformed into butyl methyl phthalate (BMP), monobutyl phthalate (MBP), and phthalic acid (PA) through esterolysis and transesterification. Besides, the generation of small quantities of low-molecular weight metabolites via ß-oxidation, decarboxylation or ring-cleavage, was also observed, especially when the appropriate proportion of NADPH coenzyme was applied to transfer electrons for oxidases. Interestingly, the esterolysis of PAEs was mainly regulated by the cytoplasmic carboxylesterase (CarE) in earthworms, with a Michaelis constant (Km) of 0.416 mM in the catalysis of DBP. The stronger esterolysis in non-intestinal tissues indicated that the CarE was primarily secreted by non-intestinal tissues of earthworms. Additionally, the intestinal symbiotic bacteria of earthworms could respond to PAE stress, leading to the changes in their diversity and composition. The enrichment of some genera e.g. Bacillus and Paracoccus, and the enhancement of metabolism function, e.g. amino acids, energy, lipids biosynthesis and oxidase secretion, indicated their important role in the degradation of PAEs.


Asunto(s)
Oligoquetos , Ácidos Ftálicos , Animales , Ácidos Ftálicos/metabolismo , Dibutil Ftalato , Suelo/química , Biotransformación , Ésteres/química , China
18.
Environ Pollut ; 331(Pt 2): 121877, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37230173

RESUMEN

Degradable plastics are gradually regarded as alternatives of conventional, synthetic organic polymers to reduce the plastics or microplastics (MPs) pollution; however, the reports upon environmental risk of degradable plastics are still limited. In order to evaluate the potential vector effect of biodegradable MPs on coexisting contaminants, sorption of atrazine onto pristine and ultraviolet-aged (UV) polybutylene adipate co-terephthalate (PBAT) MPs and polybutylene succinate co-terephthalate (PBST) MPs were investigated. The results showed that, UV aging led to more wrinkles and cracks on the surface, increased homogeneous chains proportion, enhanced hydrophobicity, and enlarged crystallinity of both MPs. The sorption kinetics of atrazine to MPs fitted well into pseudo-first-order (R2 = 0.809-0.996) and pseudo-second-order (R2 = 0.889-0.994) models. In the concentration range of 0.5-25 mg L-1, the sorption isotherm fitted into linear (R2 = 0.967-0.996) and Freundlich model (R2 = 0.972-0.997), indicating that the absorption partitioning was the dominant sorption mechanism. The partition coefficient (Kd) of atrazine to PBAT- MPs (40.11-66.01 L kg-1) was higher than that of PBST- MPs (34.34-57.96 L kg-1), and the Kd values of both MPs declined for aged MPs. The specific surface area, hydrophobicity, polarity and crystallinity of MPs jointly interpreted the changing sorption capacity of the MPs. In the present study, both aged PBAT- and aged PBST- MPs exhibited lower vector potential to atrazine than pristine MPs, suggesting reduced risk of being a pollutant carrier, which is of great significance for the development of biodegradable plastics.


Asunto(s)
Atrazina , Contaminantes Ambientales , Contaminantes Químicos del Agua , Microplásticos , Plásticos , Adsorción , Contaminantes Químicos del Agua/análisis
19.
Environ Pollut ; 320: 121081, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36646407

RESUMEN

Microplastics (MPs) are a global threat to the environment, and plant uptake of MP particles (≤0.2 µm) is a particular cause for concern. However, physiological and molecular mechanisms underlying MP-induced growth inhibition need to be clarified. Towards this goal, we conducted a hydroponic experiment to investigate the accumulation of MPs, changes in physiology, gene expression, and metabolites in lettuce from a series of concentrations of fluorescence-labelled polystyrene MPs (0, 10, 20, 30, 40, 50 mg L-1, ∼0.2 µm). Our results showed that MPs accumulated in the lettuce root tips and leaf veins, resulting in the hypertonic injury of lettuce, and the down-regulation of genes related to ion homeostasis. Stress-related genes were up-regulated, and sphingolipid metabolism increased in response to MP additions, causing increased biosynthesis of ascorbic acid, terpenoid, and flavonoids in root exudates. Our findings provide a molecular-scale perspective on the response of leafy vegetables to MP-stress at a range of concentrations. This enables more comprehensive evaluation of the risks of MPs to human health and the ecological environment.


Asunto(s)
Microplásticos , Plásticos , Humanos , Lactuca/genética , Transcriptoma , Poliestirenos
20.
Chemosphere ; 312(Pt 1): 137262, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36400195

RESUMEN

Pyrolysis of agricultural waste into biochar for soil remediation is a useful solid waste management strategy. However, it is still unclear how different agricultural feedstocks affect the properties of biochars and their effectiveness in remediation of PBDE-contaminated soil. In this study, we systematically investigated dynamic alterations of soil properties, microbial communities, and PBDE dissipation and bioavailability induced by the application of biochars from manure (MBC) and straw (SBC) to PBDE-contaminated soil. The results showed that soil properties, microbial community structure, and diversity changed differently with the incorporation of the two biochars. MBC had a larger surface area (17.4 m2/g) and a higher nutrient content (45.1% ash content), making it more suitable for use as a soil additive to improve soil quality and nutrient conditions, as well as to stimulate microbial growth. SBC showed higher adsorption capacity for 2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47) (26.73 ± 0.65 mg/g), thus lowering the bioavailability and ecological risk of BDE-47 in soil. BDE-47 was stepwise debrominated into lower brominated PBDE by PBDE-degrading bacteria. MBC accelerated the debromination of BDE-47 (10.1%) by promoting PBDE-degrading microorganisms, while this was inhibited by SBC (3.5%) due to strong adsorption of BDE-47. In addition, we found that both types of biochar favored Nitrospirae bacteria and promoted N cycling. Overall, biochars from manure and straw can positively shape soil microbial communities differently by altering soil properties, soil fertility and nutrient availability, and the fate and the effects of contaminants, which ultimately led to a difference in the potential of biochars for their use in soil remediation.


Asunto(s)
Microbiota , Contaminantes del Suelo , Estiércol , Carbón Orgánico/química , Suelo/química , Contaminantes del Suelo/análisis , Nitrógeno
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda