Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Glob Chang Biol ; 29(24): 7145-7158, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37815418

RESUMEN

Human-induced nitrogen-phosphorus (N, P) imbalance in terrestrial ecosystems can lead to disproportionate N and P loading to aquatic ecosystems, subsequently shifting the elemental ratio in estuaries and coastal oceans and impacting both the structure and functioning of aquatic ecosystems. The N:P ratio of nutrient loading to the Gulf of Mexico from the Mississippi River Basin increased before the late 1980s driven by the enhanced usage of N fertilizer over P fertilizer, whereafter the N:P loading ratio started to decrease although the N:P ratio of fertilizer application did not exhibit a similar trend. Here, we hypothesize that different release rates of soil legacy nutrients might contribute to the decreasing N:P loading ratio. Our study used a data-model integration framework to evaluate N and P dynamics and the potential for long-term accumulation or release of internal soil nutrient legacy stores to alter the ratio of N and P transported down the rivers. We show that the longer residence time of P in terrestrial ecosystems results in a much slower release of P to coastal oceans than N. If contemporary nutrient sources were reduced or suspended, P loading sustained by soil legacy P would decrease much slower than that of N, causing a decrease in the N and P loading ratio. The longer residence time of P in terrestrial ecosystems and the increasingly important role of soil legacy nutrients as a loading source may explain the decreasing N:P loading ratio in the Mississippi River Basin. Our study underscores a promising prospect for N loading control and the urgency to integrate soil P legacy into sustainable nutrient management strategies for aquatic ecosystem health and water security.


Asunto(s)
Ecosistema , Suelo , Humanos , Suelo/química , Ríos/química , Fertilizantes , Nutrientes , Fósforo , Nitrógeno/análisis
2.
Sci Rep ; 14(1): 17544, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080449

RESUMEN

Climate-induced changes in hypoxia are among the most serious threats facing estuaries, which are among the most productive ecosystems on Earth. Future projections of estuarine hypoxia typically involve long-term multi-decadal continuous simulations or more computationally efficient time slice and delta methods that are restricted to short historical and future periods. We make a first comparison of these three methods by applying a linked terrestrial-estuarine model to the Chesapeake Bay, a large coastal-plain estuary in the eastern United States. Results show that the time slice approach accurately captures the behavior of the continuous approach, indicating a minimal impact of model memory. However, increases in mean annual hypoxic volume by the mid-twenty-first century simulated by the delta approach (+ 19%) are approximately twice as large as the time slice and continuous experiments (+ 9% and + 11%, respectively), indicating an important impact of changes in climate variability. Our findings suggest that system memory and projected changes in climate variability, as well as simulation length and natural variability of system hypoxia, should be considered when deciding to apply the more computationally efficient delta and time slice methods.

3.
Nat Commun ; 15(1): 942, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296943

RESUMEN

Lentic systems (lakes and reservoirs) are emission hotpots of nitrous oxide (N2O), a potent greenhouse gas; however, this has not been well quantified yet. Here we examine how multiple environmental forcings have affected N2O emissions from global lentic systems since the pre-industrial period. Our results show that global lentic systems emitted 64.6 ± 12.1 Gg N2O-N yr-1 in the 2010s, increased by 126% since the 1850s. The significance of small lentic systems on mitigating N2O emissions is highlighted due to their substantial emission rates and response to terrestrial environmental changes. Incorporated with riverine emissions, this study indicates that N2O emissions from global inland waters in the 2010s was 319.6 ± 58.2 Gg N yr-1. This suggests a global emission factor of 0.051% for inland water N2O emissions relative to agricultural nitrogen applications and provides the country-level emission factors (ranging from 0 to 0.341%) for improving the methodology for national greenhouse gas emission inventories.

4.
Sci Total Environ ; 950: 175454, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134281

RESUMEN

The bioavailability and degradation of riverine dissolved organic matter (DOM) play crucial roles in greenhouse gas emissions; however, studies on the kinetic decomposition of fluvial DOM remain scarce. In this study, the decomposition kinetics of dissolved organic carbon (DOC) were characterized using the reactivity continuum model through 28-day bio-incubation experiments with water samples from the Yangtze River. The relationship between DOM composition and decomposition kinetics was analyzed using optical and molecular characterization combined with apparent decay coefficients. Our results revealed that DOM compounds rich in nitrogen and sulfur were predominantly removed, exhibiting a transition from an unsaturated to a saturated state following microbial degradation. These heteroatomic compounds, which constituted 75.61 % of the DOM compounds positively correlated with the decay coefficient k0, underwent preferential degradation in the early stages of bio-incubation due to their higher bioavailability. Additionally, we observed that S-containing fractions with high molecular weight values (MW > 400 Da) may be associated with larger reactivity grades. This study underscored the complex interplay between DOM composition and its kinetic decomposition in river ecosystems, providing further support for the significance of molecular composition in large river DOM as crucial factors affecting decomposition.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda