Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Genome Med ; 16(1): 87, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982518

RESUMEN

BACKGROUND: Congenital myopathies are severe genetic diseases with a strong impact on patient autonomy and often on survival. A large number of patients do not have a genetic diagnosis, precluding genetic counseling and appropriate clinical management. Our objective was to find novel pathogenic variants and genes associated with congenital myopathies and to decrease diagnostic odysseys and dead-end. METHODS: To identify pathogenic variants and genes implicated in congenital myopathies, we established and conducted the MYOCAPTURE project from 2009 to 2018 to perform exome sequencing in a large cohort of 310 families partially excluded for the main known genes. RESULTS: Pathogenic variants were identified in 156 families (50%), among which 123 families (40%) had a conclusive diagnosis. Only 44 (36%) of the resolved cases were linked to a known myopathy gene with the corresponding phenotype, while 55 (44%) were linked to pathogenic variants in a known myopathy gene with atypical signs, highlighting that most genetic diagnosis could not be anticipated based on clinical-histological assessments in this cohort. An important phenotypic and genetic heterogeneity was observed for the different genes and for the different congenital myopathy subtypes, respectively. In addition, we identified 14 new myopathy genes not previously associated with muscle diseases (20% of all diagnosed cases) that we previously reported in the literature, revealing novel pathomechanisms and potential therapeutic targets. CONCLUSIONS: Overall, this approach illustrates the importance of massive parallel gene sequencing as a comprehensive tool for establishing a molecular diagnosis for families with congenital myopathies. It also emphasizes the contribution of clinical data, histological findings on muscle biopsies, and the availability of DNA samples from additional family members to the diagnostic success rate. This study facilitated and accelerated the genetic diagnosis of congenital myopathies, improved health care for several patients, and opened novel perspectives for either repurposing of existing molecules or the development of novel treatments.


Asunto(s)
Secuenciación del Exoma , Estudios de Asociación Genética , Fenotipo , Humanos , Masculino , Femenino , Predisposición Genética a la Enfermedad , Mutación , Exoma/genética , Linaje , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/congénito , Niño , Adulto
2.
J Neurol ; 271(7): 4008-4018, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38517523

RESUMEN

OBJECTIVE: X-linked myopathy with excessive autophagy (XMEA) linked to the VMA21 gene leads to autophagy failure with progressive vacuolation and atrophy of skeletal muscles. Current knowledge of this rare disease is limited. Our objective was to define the clinical, radiological, and natural history of XMEA. METHODS: We conducted a retrospective study collecting clinical, genetic, muscle imaging, and biopsy data of XMEA patients followed in France and reviewed the literature for additional cases. RESULTS: Eighteen males had genetically confirmed XMEA in France, carrying four different VMA21 variants. Mean age at disease onset was 9.4 ± 9.9 (range 1-40) years. In 14/18 patients (77.8%), onset occurred during childhood (< 15 years); however in four patients, the disease started in adulthood. Patients had anterior and medial compartment thigh muscle weakness, distal contractures (56.3%), elevated CK levels (1287.9 ± 757.8 U/l) and autophagic vacuoles with sarcolemmal features on muscle histopathology. Muscle MRI (n = 10) showed a characteristic pattern of lower limb muscle involvement. In 11 patients, outcome measures were available for an average follow-up period of 10.6 ± 9.8 years and six of them show disease progression. Mean change of functional outcomes was 0.5 ± 1.2 points for Brooke and 2.2 ± 2.5 points for Vignos score, 7/16 patients (43.8%) needed a walking aid and 3/16 (18.8%) were wheelchair-bound (median age of 40 years old, range 39-48). The variant c.164-7 T > G was associated with a later onset of symptoms. Respiratory insufficiency was common (57.1%) but cardiac involvement rare (12.5%). INTERPRETATION: XMEA has variable age of onset, but a characteristic clinical, histopathological, and muscle imaging presentation, guiding the diagnosis. Although slowly, motor disability progresses with time, and relevant genotype-phenotype correlations will help design future clinical trials.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Músculo Esquelético , Fenotipo , Humanos , Masculino , Adulto , Adulto Joven , Adolescente , Estudios Retrospectivos , Niño , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico por imagen , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Músculo Esquelético/patología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiopatología , Preescolar , Lactante , Progresión de la Enfermedad , Persona de Mediana Edad , Francia , Enfermedades Musculares , ATPasas de Translocación de Protón Vacuolares
3.
Nat Genet ; 56(3): 395-407, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429495

RESUMEN

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.


Asunto(s)
Enfermedades Musculares , Pez Cebra , Animales , Humanos , Masculino , Conectina/genética , Conectina/metabolismo , Músculo Esquelético , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Mutación , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda