Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Cell ; 52(4): 566-73, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24267451

RESUMEN

DNA damage can stall the DNA replication machinery, leading to genomic instability. Thus, numerous mechanisms exist to complete genome duplication in the absence of a pristine DNA template, but identification of the enzymes involved remains incomplete. Here, we establish that Primase-Polymerase (PrimPol; CCDC111), an archaeal-eukaryotic primase (AEP) in eukaryotic cells, is involved in chromosomal DNA replication. PrimPol is required for replication fork progression on ultraviolet (UV) light-damaged DNA templates, possibly mediated by its ability to catalyze translesion synthesis (TLS) of these lesions. This PrimPol UV lesion bypass pathway is not epistatic with the Pol η-dependent pathway and, as a consequence, protects xeroderma pigmentosum variant (XP-V) patient cells from UV-induced cytotoxicity. In addition, we establish that PrimPol is also required for efficient replication fork progression during an unperturbed S phase. These and other findings indicate that PrimPol is an important player in replication fork progression in eukaryotic cells.


Asunto(s)
Cromosomas Humanos/genética , Aductos de ADN/genética , ADN Primasa/fisiología , Replicación del ADN , ADN Polimerasa Dirigida por ADN/fisiología , Enzimas Multifuncionales/fisiología , Secuencia de Aminoácidos , Animales , Proliferación Celular , Supervivencia Celular , Pollos , Aductos de ADN/química , Aductos de ADN/metabolismo , Daño del ADN , ADN Primasa/química , ADN de Cadena Simple/química , ADN Polimerasa Dirigida por ADN/química , Puntos de Control de la Fase G2 del Ciclo Celular , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Enzimas Multifuncionales/química , Rayos Ultravioleta , Xenopus
2.
Nucleic Acids Res ; 47(8): 4026-4038, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30715459

RESUMEN

Eukaryotic Primase-Polymerase (PrimPol) is an enzyme that maintains efficient DNA duplication by repriming replication restart downstream of replicase stalling lesions and structures. To elucidate the cellular requirements for PrimPol in human cells, we generated PrimPol-deleted cell lines and show that it plays key roles in maintaining active replication in both the nucleus and mitochondrion, even in the absence of exogenous damage. Human cells lacking PrimPol exhibit delayed recovery after UV-C damage and increased mutation frequency, micronuclei and sister chromatin exchanges but are not sensitive to genotoxins. PrimPol is also required during mitochondrial replication, with PrimPol-deficient cells having increased mtDNA copy number but displaying a significant decrease in replication. Deletion of PrimPol in XPV cells, lacking functional polymerase Eta, causes an increase in DNA damage sensitivity and pronounced fork stalling after UV-C treatment. We show that, unlike canonical TLS polymerases, PrimPol is important for allowing active replication to proceed, even in the absence of exogenous damage, thus preventing the accumulation of excessive fork stalling and genetic mutations. Together, these findings highlight the importance of PrimPol for maintaining efficient DNA replication in unperturbed cells and its complementary roles, with Pol Eta, in damage tolerance in human cells.


Asunto(s)
Núcleo Celular/efectos de la radiación , ADN Primasa/genética , Replicación del ADN/efectos de la radiación , ADN Polimerasa Dirigida por ADN/genética , ADN/genética , Mitocondrias/efectos de la radiación , Enzimas Multifuncionales/genética , 4-Nitroquinolina-1-Óxido/farmacología , Bleomicina/farmacología , Línea Celular Transformada , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Cisplatino/farmacología , ADN/efectos de los fármacos , ADN/metabolismo , ADN Primasa/deficiencia , Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/deficiencia , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Eliminación de Gen , Humanos , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Enzimas Multifuncionales/deficiencia , Mutágenos/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/efectos de la radiación , Quinolonas/farmacología , Intercambio de Cromátides Hermanas/efectos de los fármacos , Intercambio de Cromátides Hermanas/efectos de la radiación , Rayos Ultravioleta/efectos adversos
3.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948090

RESUMEN

Usher syndrome is an autosomal recessive disorder characterized by congenital hearing loss combined with retinitis pigmentosa, and in some cases, vestibular areflexia. Three clinical subtypes are distinguished, and MYO7A and USH2A represent the two major causal genes involved in Usher type I, the most severe form, and type II, the most frequent form, respectively. Massively parallel sequencing was performed on a cohort of patients in the context of a molecular diagnosis to confirm clinical suspicion of Usher syndrome. We report here 231 pathogenic MYO7A and USH2A genotypes identified in 73 Usher type I and 158 Usher type II patients. Furthermore, we present the ACMG classification of the variants, which comprise all types. Among them, 68 have not been previously reported in the literature, including 12 missense and 16 splice variants. We also report a new deep intronic variant in USH2A. Despite the important number of molecular studies published on these two genes, we show that during the course of routine genetic diagnosis, undescribed variants continue to be identified at a high rate. This is particularly pertinent in the current era, where therapeutic strategies based on DNA or RNA technologies are being developed.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Genotipo , Mutación Missense , Miosina VIIa/genética , Sitios de Empalme de ARN , Síndromes de Usher , Adulto , Femenino , Francia , Humanos , Masculino , Síndromes de Usher/clasificación , Síndromes de Usher/genética
4.
Mol Cell ; 41(2): 221-31, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21255731

RESUMEN

In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair.


Asunto(s)
Proteínas Bacterianas/química , ADN Polimerasa Dirigida por ADN/química , Mycobacterium tuberculosis/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/fisiología , Sitios de Unión , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Polimerasa Dirigida por ADN/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Uridina Trifosfato/química
5.
Nucleic Acids Res ; 42(9): 5830-45, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24682820

RESUMEN

PrimPol is a primase-polymerase involved in nuclear and mitochondrial DNA replication in eukaryotic cells. Although PrimPol is predicted to possess an archaeo-eukaryotic primase and a UL52-like zinc finger domain, the role of these domains has not been established. Here, we report that the proposed zinc finger domain of human PrimPol binds zinc ions and is essential for maintaining primase activity. Although apparently dispensable for its polymerase activity, the zinc finger also regulates the processivity and fidelity of PrimPol's extension activities. When the zinc finger is disrupted, PrimPol becomes more promutagenic, has an altered translesion synthesis spectrum and is capable of faithfully bypassing cyclobutane pyrimidine dimer photolesions. PrimPol's polymerase domain binds to both single- and double-stranded DNA, whilst the zinc finger domain binds only to single-stranded DNA. We additionally report that although PrimPol's primase activity is required to restore wild-type replication fork rates in irradiated PrimPol-/- cells, polymerase activity is sufficient to maintain regular replisome progression in unperturbed cells. Together, these findings provide the first analysis of the molecular architecture of PrimPol, describing the activities associated with, and interplay between, its functional domains and defining the requirement for its primase and polymerase activities during nuclear DNA replication.


Asunto(s)
ADN Primasa/química , ADN Polimerasa Dirigida por ADN/química , Enzimas Multifuncionales/química , Animales , Dominio Catalítico , Línea Celular , ADN Primasa/fisiología , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/fisiología , Ensayo de Cambio de Movilidad Electroforética , Humanos , Manganeso/química , Enzimas Multifuncionales/fisiología , Unión Proteica , Proteínas de Xenopus/química , Zinc/química
6.
Diagnostics (Basel) ; 12(1)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35054374

RESUMEN

GSDME, also known as DFNA5, is a gene implicated in autosomal dominant nonsyndromic hearing loss (ADNSHL), affecting, at first, the high frequencies with a subsequent progression over all frequencies. To date, all the GSDME pathogenic variants associated with deafness lead to skipping of exon 8. In two families with apparent ADNSHL, massively parallel sequencing (MPS) integrating a coverage-based method for detection of copy number variations (CNVs) was applied, and it identified the first two causal GSDME structural variants affecting exon 8. The deleterious impact of the c.991-60_1095del variant, which includes the acceptor splice site sequence of exon 8, was confirmed by the study of the proband's transcripts. The second mutational event is a complex rearrangement that deletes almost all of the exon 8 sequence. This study increases the mutational spectrum of the GSDME gene and highlights the crucial importance of MPS data for the detection of GSDME exon 8 deletions, even though the identification of a causal single-exon CNV by MPS analysis is still challenging.

7.
Eur J Hum Genet ; 30(1): 34-41, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34857896

RESUMEN

Alterations of the transmembrane channel-like 1 gene (TMC1) are involved in autosomal recessive and dominant nonsyndromic hearing loss (NSHL). To date, up to 117 causal variants including substitutions, insertions and splice variants have been reported in families from different populations. In a patient suffering from severe prelingual NSHL, we identified, in the homozygous state, the previously considered likely benign synonymous c.627C>T; p.(Leu209=) substitution. We used in silico tools predicting variant-induced alterations of splicing regulatory elements (SREs) and pinpointed this transition as a candidate splice-altering variation. Functional splicing analysis, using a minigene assay, confirmed that the variant altered a critical regulatory sequence which is essential for the exon 11 inclusion in the TMC1 transcripts. This result was reinforced by the analysis of orthologous TMC1 mammalian sequences for which the deleterious effect on the mRNA processing of a native thymidine was always counteracted by the presence of a stronger donor splice site or additional enhancer motifs. This study demonstrates, for the first time, the pathogenicity of the c.627C>T alteration leading to its reclassification as a causal variant impacting SREs and highlights the major importance of exhaustive studies to accurately evaluate the pathogenicity of a variant, regardless of the variation type.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Empalme del ARN , Niño , Genes Recesivos , Células HEK293 , Pérdida Auditiva Sensorineural/patología , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Mutación Puntual , Sitios de Empalme de ARN
8.
Cell Death Dis ; 12(7): 709, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267184

RESUMEN

Asparaginase depletes extracellular asparagine in the blood and is an important treatment for acute lymphoblastic leukemia (ALL) due to asparagine auxotrophy of ALL blasts. Unfortunately, resistance occurs and has been linked to expression of the enzyme asparagine synthetase (ASNS), which generates asparagine from intracellular sources. Although TP53 is the most frequently mutated gene in cancer overall, TP53 mutations are rare in ALL. However, TP53 mutation is associated with poor therapy response and occurs at higher frequency in relapsed ALL. The mutant p53-reactivating compound APR-246 (Eprenetapopt/PRIMA-1Met) is currently being tested in phase II and III clinical trials in several hematological malignancies with mutant TP53. Here we present CEllular Thermal Shift Assay (CETSA) data indicating that ASNS is a direct or indirect target of APR-246 via the active product methylene quinuclidinone (MQ). Furthermore, combination treatment with asparaginase and APR-246 resulted in synergistic growth suppression in ALL cell lines. Our results thus suggest a potential novel treatment strategy for ALL.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Asparaginasa/farmacología , Proliferación Celular/efectos de los fármacos , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Quinuclidinas/farmacología , Proteína p53 Supresora de Tumor/agonistas , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Nat Commun ; 11(1): 4196, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32826907

RESUMEN

Cells utilise specialized polymerases from the Primase-Polymerase (Prim-Pol) superfamily to maintain genome stability. Prim-Pol's function in genome maintenance pathways including replication, repair and damage tolerance. Mycobacteria contain multiple Prim-Pols required for lesion repair, including Prim-PolC that performs short gap repair synthesis during excision repair. To understand the molecular basis of Prim-PolC's gap recognition and synthesis activities, we elucidated crystal structures of pre- and post-catalytic complexes bound to gapped DNA substrates. These intermediates explain its binding preference for short gaps and reveal a distinctive modus operandi called Synthesis-dependent Template Displacement (STD). This mechanism enables Prim-PolC to couple primer extension with template base dislocation, ensuring that the unpaired templating bases in the gap are ushered into the active site in an ordered manner. Insights provided by these structures establishes the molecular basis of Prim-PolC's gap recognition and extension activities, while also illuminating the mechanisms of primer extension utilised by closely related Prim-Pols.


Asunto(s)
Proteínas Bacterianas/química , ADN Primasa/química , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN/química , Mycobacterium/genética , Mycobacterium/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , ADN/metabolismo , ADN Primasa/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas
10.
Cell Death Discov ; 6: 42, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528731

RESUMEN

Cancer-associated fibroblasts (CAFs) promote tumor growth and progression, and increase drug resistance through several mechanisms. We have investigated the effect of CAFs on the p53 response to doxorubicin in prostate cancer cells. We show that CAFs produce interleukin-6 (IL-6), and that IL-6 attenuates p53 induction and upregulation of the pro-apoptotic p53 target Bax upon treatment with doxorubicin. This is associated with increased levels of MDM2 mRNA, Mdm2 protein bound to p53, and ubiquitinated p53. IL-6 also inhibited doxorubicin-induced cell death. Inhibition of JAK or STAT3 alleviated this effect, indicating that IL-6 attenuates p53 via the JAK/STAT signaling pathway. These results suggest that CAF-derived IL-6 plays an important role in protecting cancer cells from chemotherapy and that inhibition of IL-6 could have significant therapeutic value.

11.
Nat Rev Cancer ; 18(2): 89-102, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29242642

RESUMEN

The tumour suppressor gene TP53 is the most frequently mutated gene in cancer. Wild-type p53 can suppress tumour development by multiple pathways. However, mutation of TP53 and the resultant inactivation of p53 allow evasion of tumour cell death and rapid tumour progression. The high frequency of TP53 mutation in tumours has prompted efforts to restore normal function of mutant p53 and thereby trigger tumour cell death and tumour elimination. Small molecules that can reactivate missense-mutant p53 protein have been identified by different strategies, and two compounds are being tested in clinical trials. Novel approaches for targeting TP53 nonsense mutations are also underway. This Review discusses recent progress in pharmacological reactivation of mutant p53 and highlights problems and promises with these strategies.


Asunto(s)
Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Antineoplásicos/administración & dosificación , Muerte Celular/efectos de los fármacos , Humanos , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Neoplasias/genética , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética
12.
Nat Commun ; 8(1): 1251, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29089537

RESUMEN

Prokaryotic Ligase D is a conserved DNA repair apparatus processing DNA double-strand breaks in stationary phase. An orthologous Ligase C (LigC) complex also co-exists in many bacterial species but its function is unknown. Here we show that the LigC complex interacts with core BER enzymes in vivo and demonstrate that together these factors constitute an excision repair apparatus capable of repairing damaged bases and abasic sites. The polymerase component, which contains a conserved C-terminal structural loop, preferentially binds to and fills-in short gapped DNA intermediates with RNA and LigC ligates the resulting nicks to complete repair. Components of the LigC complex, like LigD, are expressed upon entry into stationary phase and cells lacking either of these pathways exhibit increased sensitivity to oxidising genotoxins. Together, these findings establish that the LigC complex is directly involved in an excision repair pathway(s) that repairs DNA damage with ribonucleotides during stationary phase.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Ligasas/genética , Reparación del ADN/genética , ADN/metabolismo , Mycobacterium smegmatis/genética , ARN Polimerasa III/metabolismo , Mycobacterium/genética , ARN
13.
Cell Death Dis ; 8(6): e2848, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569790

RESUMEN

Drug resistance is a major problem in cancer therapy. A growing body of evidence demonstrates that the tumor microenvironment, including cancer-associated fibroblasts (CAFs), can modulate drug sensitivity in tumor cells. We examined the effect of primary human CAFs on p53 induction and cell viability in prostate cancer cells on treatment with chemotherapeutic drugs. Co-culture with prostate CAFs or CAF-conditioned medium attenuated DNA damage and the p53 response to chemotherapeutic drugs and enhanced prostate cancer cell survival. CAF-conditioned medium inhibited the accumulation of doxorubicin, but not taxol, in prostate cancer cells in a manner that was associated with increased cancer cell glutathione levels. A low molecular weight fraction (<3 kDa) of CAF-conditioned medium had the same effect. CAF-conditioned medium also inhibited induction of reactive oxygen species (ROS) in both doxorubicin- and taxol-treated cancer cells. Our findings suggest that CAFs can enhance drug resistance in cancer cells by inhibiting drug accumulation and counteracting drug-induced oxidative stress. This protective mechanism may represent a novel therapeutic target in cancer.


Asunto(s)
Antineoplásicos/farmacología , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Glutatión/agonistas , Neoplasias de la Próstata/genética , Proteína p53 Supresora de Tumor/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Daño del ADN , Doxorrubicina/antagonistas & inhibidores , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Glutatión/metabolismo , Humanos , Masculino , Paclitaxel/antagonistas & inhibidores , Paclitaxel/farmacología , Cultivo Primario de Células , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Microambiente Tumoral/efectos de los fármacos , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo
15.
Cell Cycle ; 15(7): 908-18, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26694751

RESUMEN

PrimPol is a recently identified member of the archaeo-eukaryote primase (AEP) family of primase-polymerases. It has been shown that this mitochondrial and nuclear localized enzyme plays roles in the maintenance of both unperturbed replication fork progression and in the bypass of lesions after DNA damage. Here, we utilized an avian (DT40) knockout cell line to further study the consequences of loss of PrimPol (PrimPol(-/-)) on the downstream maintenance of cells after UV damage. We report that PrimPol(-/-) cells are more sensitive to UV-C irradiation in colony survival assays than Pol η-deficient cells. Although this increased UV sensitivity is not evident in cell viability assays, we show that this discrepancy is due to an enhanced checkpoint arrest after UV-C damage in the absence of PrimPol. PrimPol(-/-) arrested cells become stalled in G2, where they are protected from UV-induced cell death. Despite lacking an enzyme required for the bypass and maintenance of replication fork progression in the presence of UV damage, we show that PrimPol(-/-) cells actually have an advantage in the presence of a Chk1 inhibitor due to their slow progression through S-phase.


Asunto(s)
Daño del ADN , ADN Primasa/fisiología , ADN Polimerasa Dirigida por ADN/fisiología , Puntos de Control de la Fase G2 del Ciclo Celular , Rayos Ultravioleta , Animales , Muerte Celular , Línea Celular , Proliferación Celular , Supervivencia Celular/efectos de la radiación , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Pollos , ADN Primasa/genética , ADN Polimerasa Dirigida por ADN/genética , Fase G2/efectos de la radiación , Técnicas de Inactivación de Genes , Mitosis/efectos de la radiación , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
16.
Oncotarget ; 7(2): 1895-911, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26672765

RESUMEN

RNA-binding proteins (RBPs) play important roles in the regulation of gene expression through a variety of post-transcriptional mechanisms. The p53-induced RBP Wig-1 (Zmat3) binds RNA through its zinc finger domains and enhances stability of p53 and N-Myc mRNAs and decreases stability of FAS mRNA. To identify novel Wig-1-bound RNAs, we performed RNA-immunoprecipitation followed by high-throughput sequencing (RIP-Seq) in HCT116 and Saos-2 cells. We identified 286 Wig-1-bound mRNAs common between the two cell lines. Sequence analysis revealed that AU-rich elements (AREs) are highly enriched in the 3'UTR of these Wig-1-bound mRNAs. Network enrichment analysis showed that Wig-1 preferentially binds mRNAs involved in cell cycle regulation. Moreover, we identified a 2D Wig-1 binding motif in HIF1A mRNA. Our findings confirm that Wig-1 is an ARE-BP that regulates cell cycle-related processes and provide a novel view of how Wig-1 may bind mRNA through a putative structural motif. We also significantly extend the repertoire of Wig-1 target mRNAs. Since Wig-1 is a transcriptional target of the tumor suppressor p53, these results have implications for our understanding of p53-dependent stress responses and tumor suppression.


Asunto(s)
Neoplasias Óseas/genética , Proteínas Portadoras/genética , Proteínas Nucleares/genética , Osteosarcoma/genética , ARN Mensajero/genética , Elementos de Respuesta/genética , Transcriptoma , Proteína p53 Supresora de Tumor/metabolismo , Western Blotting , Neoplasias Óseas/patología , Ontología de Genes , Redes Reguladoras de Genes , Células HCT116 , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Inmunoprecipitación , Osteosarcoma/patología , Proteínas de Unión al ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética
17.
Mol Cell Oncol ; 1(2): e960754, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-27308331

RESUMEN

The DNA-directed primase-polymerase PrimPol of the archaeo-eukaryotic primase superfamily represents an ancient solution to the many problems faced during genome duplication. This versatile enzyme is capable of initiating de novo DNA/RNA synthesis, DNA chain elongation, and has the capacity to bypass modifications that stall the replisome by trans-lesion synthesis or origin-independent re-priming, thus allowing discontinuous synthesis of the leading strand. Recent studies have shown that PrimPol is an important new player in replication fork progression in eukaryotic cells; this review summarizes our current understanding of PrimPol and highlights important questions that remain to be addressed.

18.
Cell Rep ; 5(4): 1108-20, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24239356

RESUMEN

Nonhomologous end-joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways. The mechanisms by which breaks are competently brought together and extended during NHEJ is poorly understood. As polymerases extend DNA in a 5'-3' direction by nucleotide addition to a primer, it is unclear how NHEJ polymerases fill in break termini containing 3' overhangs that lack a primer strand. Here, we describe, at the molecular level, how prokaryotic NHEJ polymerases configure a primer-template substrate by annealing the 3' overhanging strands from opposing breaks, forming a gapped intermediate that can be extended in trans. We identify structural elements that facilitate docking of the 3' ends in the active sites of adjacent polymerases and reveal how the termini act as primers for extension of the annealed break, thus explaining how such DSBs are extended in trans. This study clarifies how polymerases couple break-synapsis to catalysis, providing a molecular mechanism to explain how primer extension is achieved on DNA breaks.


Asunto(s)
Proteínas Bacterianas/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Cartilla de ADN/genética , Enzimas Reparadoras del ADN/genética
19.
Mol Cancer Ther ; 8(8): 2286-95, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19671755

RESUMEN

Deregulation of the ubiquitin/proteasome system has been implicated in the pathogenesis of many human diseases, including cancer. Ubiquitin-specific proteases (USP) are cysteine proteases involved in the deubiquitination of protein substrates. Functional connections between USP7 and essential viral proteins and oncogenic pathways, such as the p53/Mdm2 and phosphatidylinositol 3-kinase/protein kinase B networks, strongly suggest that the targeting of USP7 with small-molecule inhibitors may be useful for the treatment of cancers and viral diseases. Using high-throughput screening, we have discovered HBX 41,108, a small-molecule compound that inhibits USP7 deubiquitinating activity with an IC(50) in the submicromolar range. Kinetics data indicate an uncompetitive reversible inhibition mechanism. HBX 41,108 was shown to affect USP7-mediated p53 deubiquitination in vitro and in cells. As RNA interference-mediated USP7 silencing in cancer cells, HBX 41,108 treatment stabilized p53, activated the transcription of a p53 target gene without inducing genotoxic stress, and inhibited cancer cell growth. Finally, HBX 41,108 induced p53-dependent apoptosis as shown in p53 wild-type and null isogenic cancer cell lines. We thus report the identification of the first lead-like inhibitor against USP7, providing a structural basis for the development of new anticancer drugs.


Asunto(s)
Indenos/farmacología , Inhibidores de Proteasas/farmacología , Pirazinas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Proteína p53 Supresora de Tumor/genética , Ubiquitina Tiolesterasa/metabolismo , Peptidasa Específica de Ubiquitina 7
20.
J Biol Chem ; 281(49): 37517-26, 2006 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-17038309

RESUMEN

Non-homologous end-joining is a major pathway of DNA double-strand break repair in mammalian cells, deficiency in which confers radiosensitivity and immune deficiency at the whole organism level. A core protein complex comprising the Ku70/80 heterodimer together with a complex between DNA ligase IV and XRCC4 is conserved throughout eukaryotes and assembles at double-strand breaks to mediate ligation of broken DNA ends. In Saccharomyces cerevisiae an additional NHEJ protein, Nej1p, physically interacts with the ligase IV complex and is required in vivo for ligation of DNA double-strand breaks. Recent studies with cells derived from radiosensitive and immune-deficient patients have identified the human protein, XLF (also named Cernunnos), as a crucial NHEJ protein. Here we show that XLF and Nej1p are members of the same protein superfamily and that this family has members in diverse eukaryotes. Indeed, we show that a member of this family encoded by a previously uncharacterized open-reading frame in the Schizosaccharomyces pombe genome is required for NHEJ in this organism. Furthermore, our data reveal that XLF family proteins can bind to DNA and directly interact with the ligase IV-XRCC4 complex to promote DSB ligation. We therefore conclude that XLF family proteins interact with the ligase IV-XRCC4 complex to constitute the evolutionarily conserved enzymatic core of the NHEJ machinery.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , ADN/metabolismo , Enzimas Reparadoras del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/química , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Humanos , Técnicas In Vitro , Complejos Multiproteicos , Mutación , Neurospora crassa/genética , Neurospora crassa/metabolismo , Filogenia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Levaduras/genética , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda