RESUMEN
The tradeoff between speed and accuracy is a well-known constraint for human movement, but previous work has shown that this tradeoff can be modified by practice, and the quantitative relationship between speed and accuracy may be an indicator of skill in some tasks. We have previously shown that children with dystonia are able to adapt their movement strategy in a ballistic throwing game to compensate for increased variability of movement. Here, we test whether children with dystonia can adapt and improve skills learned on a trajectory task. We use a novel task in which children move a spoon with a marble between two targets. Difficulty is modified by changing the depth of the spoon. Our results show that both healthy children and children with acquired dystonia move more slowly with the more difficult spoons, and both groups improve the relationship between speed and spoon difficulty following 1 wk of practice. By tracking the marble position in the spoon, we show that children with dystonia use a larger fraction of the available variability, whereas healthy children adopt a much safer strategy and remain farther from the margins, as well as learning to adapt and have more control over the marble's utilized area by practice. Together, our results show that both healthy children and children with dystonia choose trajectories that compensate for risk and inherent variability, and that the increased variability in dystonia can be modified with continued practice.NEW & NOTEWORTHY This study provides insights into the adaptability of children with dystonia in learning a point-to-point task. We show that these children adjust their strategies to account for increased difficulty in the task. Our findings underscore the potential of task-specific practice in improving motor skills and show higher level of signal-dependent noise can be controlled through repetition and learned strategies, which provides an avenue for the quantitative evaluation of rehabilitation strategies in this challenging group.
Asunto(s)
Distonía , Trastornos Distónicos , Humanos , Niño , Movimiento , Destreza Motora , Carbonato de CalcioRESUMEN
Wearable sensors are widely used to gather psychophysiological data in the laboratory and real-world applications. However, the accuracy of these devices should be carefully assessed. The study focused on testing the accuracy of the Empatica 4 (E4) wristband for the detection of heart rate variability (HRV) and electrodermal activity (EDA) metrics in stress-inducing conditions and growing-risk driving scenarios. Fourteen healthy subjects were recruited for the experimental campaign, where HRV and EDA were recorded over six experimental conditions (Baseline, Video Clip, Scream, No-Risk Driving, Low-Risk Driving, and High-Risk Driving) and by means of two measurement systems: the E4 device and a gold standard system. The overall quality of the E4 data was investigated; agreement and reliability were assessed by performing a Bland-Altman analysis and by computing the Spearman's correlation coefficient. HRV time-domain parameters reported high reliability levels in Baseline (r > 0.72), Video Clip (r > 0.71), and No-Risk Driving (r > 0.67), while HRV frequency domain parameters were sufficient in Baseline (r > 0.58), Video Clip (r > 0.59), No-Risk (r > 0.51), and Low-Risk Driving (r > 0.52). As for the EDA parameters, no correlation was found. Further studies could enhance the HRV and EDA quality through further optimizations of the acquisition protocol and improvement of the processing algorithms.
Asunto(s)
Dispositivos Electrónicos Vestibles , Muñeca , Humanos , Frecuencia Cardíaca/fisiología , Respuesta Galvánica de la Piel , Reproducibilidad de los ResultadosRESUMEN
BACKGROUND: Upper limb assistive devices can compensate for muscular weakness and empower the user in the execution of daily activities. Multiple devices have been recently proposed but there is still a lack in the scientific comparison of their efficacy. METHODS: We conducted a cross-over multi-centric randomized controlled trial to assess the functional improvement at the upper limb level of two arms supports on 36 patients with muscular dystrophy. Participants tested a passive device (i.e., Wrex by Jaeco) and a semi-active solution for gravity compensation (i.e., Armon Ayura). We evaluated devices' effectiveness with an externally-assessed scale (i.e., Performance of the Upper Limb-PUL-module), a self-perceived scale (i.e., Abilhand questionnaire), and a usability scale (i.e., System Usability Scale). Friedman's test was used to assess significant functional gain for PUL module and Abilhand questionnaire. Moreover, PUL changes were compared by means of the Friedman's test. RESULTS: Most of the patients improved upper limb function with the use of arm supports (median PUL scores increase of 1-3 points). However, the effectiveness of each device was related to the level of residual ability of the end-user. Slightly impaired patients maintained the same independence without and with assistive devices, even if they reported reduced muscular fatigue for both devices. Moderately impaired patients enhanced their arm functionality with both devices, and they obtained higher improvements with the semi-active one (median PUL scores increase of 9 points). Finally, severely impaired subjects benefited only from the semi-active device (median PUL scores increase of 12 points). Inadequate strength was recognized as a barrier to passive devices. The usability, measured by the System Usability Scale, was evaluated by end-users "good" (70/100 points) for the passive, and "excellent" (80/100 points) for the semi-active device. CONCLUSIONS: This study demonstrated that assistive devices can improve the quality of life of people suffering from muscular dystrophy. The use of passive devices, despite being low cost and easy to use, shows limitations in the efficacy of the assistance to daily tasks, limiting the assistance to a predefined horizontal plane. The addition of one active degree of freedom improves efficacy and usability especially for medium to severe patients. Further investigations are needed to increase the evidence on the effect of arm supports on quality of life and diseases' progression in subjects with degenerative disorders. Trial registration clinicaltrials.gov, NCT03127241, Registered 25th April 2017. The clinical trial was also registered as a post-market study at the Italian Ministry of Health.
Asunto(s)
Distrofias Musculares/rehabilitación , Dispositivos de Autoayuda , Adulto , Estudios Cruzados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Calidad de Vida , Extremidad Superior/fisiopatologíaRESUMEN
OBJECTIVE: To evaluate retrospectively the effect of robotic rehabilitation in a large group of children with motor impairment; an additional goal was to identify the effects in children with cerebral palsy (CP) and acquired brain injury (ABI) and with different levels of motor impairment according to the Gross Motor Function Classification System. Finally, we examined the effect of time elapsed from injury on children's functions. DESIGN: A cohort, pretest-posttest retrospective study was conducted. SETTING: Hospitalized care. PARTICIPANTS: A total of 182 children, 110 with ABI and 72 with CP and with Gross Motor Function Classification System (GMFCS) levels I-IV, were evaluated retrospectively. INTERVENTIONS: Patients underwent a combined treatment of robot-assisted gait training and physical therapy. MAIN OUTCOME MEASURES: All the patients were evaluated before and after the training using the 6-minute walk test and the Gross Motor Function Measure. A linear mixed model with 3 fixed factors and 1 random factor was used to evaluate improvements. RESULTS: The 6-minute walk test showed improvement in the whole group and in both ABI and CP. The Gross Motor Function Measure showed improvement in the whole group and in the patients with ABI but not in children with CP. The GMFCS analysis showed that all outcomes improved significantly in all classes within the ABI subgroup, whereas improvements were significant only for GMFCS III in children with CP. CONCLUSIONS: Children with motor impairment can benefit from a combination of robotic rehabilitation and physical therapy. Our data suggest positive results for the whole group and substantial differences between ABI and CP subgroups, with better results for children with ABI, that seem to be consistently related to time elapsed from injury.
Asunto(s)
Lesiones Encefálicas/complicaciones , Parálisis Cerebral/complicaciones , Trastornos Neurológicos de la Marcha/rehabilitación , Modalidades de Fisioterapia , Robótica/métodos , Lesiones Encefálicas/fisiopatología , Parálisis Cerebral/fisiopatología , Niño , Femenino , Marcha , Trastornos Neurológicos de la Marcha/etiología , Humanos , Masculino , Estudios Retrospectivos , Resultado del TratamientoRESUMEN
Posterior cranial fossa (PCF) tumors in childhood are often associated with ataxia as well as other motor, neurobehavioral and linguistic impairment. The use of a reliable outcome measure is mandatory to evaluate the severity of impairment and monitor rehabilitation effectiveness. The aim of this work is to explore the validity of the Scale for the Assessment and Rating of Ataxia (SARA) in pediatric subjects with ataxia secondary to PCF tumor resection and evaluate the influence of age and comorbidities. Seventy eight patients (3-18 years) were recruited in 5 centers from 2016 to 2018. The age effect on SARA was analyzed by correlating total SARA scores and item scores with age and gradually excluding youngest subjects. The comorbidity effect was evaluated by comparing the ataxia-only group vs a group of subjects with ataxia + dysfunction of cranial nerves or cerebellar mutism (CM) and a group of patients with ataxia + hemiparesis. Several negative correlations between SARA scores and age were found under age 9. Differences between ataxia-only group and the other two groups were closely associated with specific comorbidities (e.g. speech disturbance in cranial nerves or CM group (p value < 0.001) and gait, stance, sitting and finger chase in the hemiparetic group (mean p value 0.022)).
Asunto(s)
Ataxia/complicaciones , Fosa Craneal Posterior/cirugía , Neoplasias de la Base del Cráneo/patología , Adolescente , Ataxia/fisiopatología , Niño , Preescolar , Comorbilidad , Fosa Craneal Posterior/patología , Femenino , Humanos , Masculino , Índice de Severidad de la Enfermedad , Neoplasias de la Base del Cráneo/fisiopatología , Neoplasias de la Base del Cráneo/cirugíaRESUMEN
Wearable sensors are becoming increasingly popular for complementing classical clinical assessments of gait deficits. The aim of this review is to examine the existing knowledge by systematically reviewing a large number of papers focusing on the use of wearable inertial sensors for the assessment of gait during the 6-minute walk test (6MWT), a widely recognized, simple, non-invasive, low-cost and reproducible exercise test. After a systematic search on PubMed and Scopus databases, two raters evaluated the quality of 28 full-text articles. Then, the available knowledge was summarized regarding study design, subjects enrolled (number of patients and pathological condition, if any, age, male/female ratio), sensor characteristics (type, number, sampling frequency, range) and body placement, 6MWT protocol and extracted parameters. Results were critically discussed to suggest future directions for the use of inertial sensor devices in the clinics.
Asunto(s)
Marcha , Prueba de Paso , Dispositivos Electrónicos Vestibles , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Reproducibilidad de los Resultados , Adulto JovenRESUMEN
Patients at risk of developing respiratory dysfunctions, such as patients with severe forms of muscular dystrophy, need a careful respiratory assessment, and periodic follow-up visits to monitor the progression of the disease. In these patients, at-home continuous monitoring of respiratory activity patterns could provide additional understanding about disease progression, allowing prompt clinical intervention. The core aim of the present study is thus to investigate the feasibility of using an innovative wearable device for respiratory monitoring, particularly breathing frequency variation assessment, in patients with muscular dystrophy. A comparison of measurements of breathing frequency with gold standard methods showed that the device based on the inertial measurement units (IMU-based device) provided optimal results in terms of accuracy errors, correlation, and agreement. Participants positively evaluated the device for ease of use, comfort, usability, and wearability. Moreover, preliminary results confirmed that breathing frequency is a valuable breathing parameter to monitor, at the clinic and at home, because it strongly correlates with the main indexes of respiratory function.
Asunto(s)
Distrofias Musculares , Dispositivos Electrónicos Vestibles , Humanos , Monitoreo Fisiológico , Distrofias Musculares/diagnóstico , Distrofias Musculares/fisiopatología , Proyectos Piloto , RespiraciónRESUMEN
BACKGROUND: This study is aimed at better understanding the role of a wearable and silent ElectroMyoGraphy-based biofeedback on motor learning in children and adolescents with primary and secondary dystonia. METHODS: A crossover study with a wash-out period of at least 1 week was designed; the device provides the patient with a vibration proportional to the activation of an impaired target muscle. The protocol consisted of two 5-day blocks during which subjects were trained and tested on a figure-8 writing task: their performances (at different levels of difficulty) were evaluated in terms of both kinematics and muscular activations on day 1 and day 5, while the other 3 days were purely used as training sessions. The training was performed with and without using the biofeedback device: the week of use was randomized. Data were collected on 14 subjects with primary and secondary (acquired) dystonia (age: 6-19 years). RESULTS: Results comparing kinematic-based and EMG-based outcome measures pre- and post-training showed learning due to practice for both subjects with primary and secondary dystonia. On top of said learning, an improvement in terms of inter-joint coordination and muscular pattern functionality was recorded only for secondary dystonia subjects, when trained with the aid of the EMG-based biofeedback device. CONCLUSIONS: Our results support the hypothesis that children and adolescents with primary dystonia in which there is intact sensory processing do not benefit from feedback augmentation, whereas children with secondary dystonia, in which sensory deficits are often present, exhibit a higher learning capacity when augmented movement-related sensory information is provided. This study represents a fundamental investigation to address the scarcity of noninvasive therapeutic interventions for young subjects with dystonia.
Asunto(s)
Biorretroalimentación Psicológica/métodos , Distonía/rehabilitación , Electromiografía/instrumentación , Aprendizaje/fisiología , Actividad Motora/fisiología , Adolescente , Fenómenos Biomecánicos , Niño , Estudios Cruzados , Electromiografía/métodos , Femenino , Humanos , Masculino , Proyectos Piloto , Vibración , Adulto JovenRESUMEN
Breathing frequency (fB) is an important vital sign that-if appropriately monitored-may help to predict clinical adverse events. Inertial sensors open the door to the development of low-cost, wearable, and easy-to-use breathing-monitoring systems. The present paper proposes a new posture-independent processing algorithm for breath-by-breath extraction of breathing temporal parameters from chest-wall inclination change signals measured using inertial measurement units. An important step of the processing algorithm is dimension reduction (DR) that allows the extraction of a single respiratory signal starting from 4-component quaternion data. Three different DR methods are proposed and compared in terms of accuracy of breathing temporal parameter estimation, in a group of healthy subjects, considering different breathing patterns and different postures; optoelectronic plethysmography was used as reference system. In this study, we found that the method based on PCA-fusion of the four quaternion components provided the best fB estimation performance in terms of mean absolute errors (<2 breaths/min), correlation (r > 0.963) and Blandâ»Altman Analysis, outperforming the other two methods, based on the selection of a single quaternion component, identified on the basis of spectral analysis; particularly, in supine position, results provided by PCA-based method were even better than those obtained with the ideal quaternion component, determined a posteriori as the one providing the minimum estimation error. The proposed algorithm and system were able to successfully reconstruct the respiration-induced movement, and to accurately determine the respiratory rate in an automatic, position-independent manner.
RESUMEN
Motor planning is not a monolithic process, and distinct stages of motor planning are responsible for encoding different levels of abstractness. However, how these distinct components are mapped into different neural substrates remains an open question. We studied one of these high-level motor planning components, defined as second-order motor planning, in a patient (R.G.) with an extremely rare case of cerebellar agenesis but without any other cortical malformations. Second-order motor planning dictates that when two acts must be performed sequentially, planning of the second act can influence execution of the first. We used an optoelectronic system for kinematic analysis to compare R.G.'s performance with age-matched controls in a second-order motor planning task. The first act was to reach for an object, and the second was to place it into a small or large container. Our results showed that despite the expected difficulties in fine-motor skills, second-order motor planning (i.e., the ability to modulate the first act as a function of the nature of the second act) was preserved even in the patient with congenital absence of the cerebellum. These results open new intriguing speculations about the role of the cerebellum in motor planning abilities. Although prudence is imperative when suggesting conclusions made on the basis of single-case findings, this evidence suggests fascinating hypotheses about the neural circuits that support distinct stages of the motor planning hierarchy, and regarding the functional role of second-order motor planning in motor cognition and its potential dysfunction in autism.NEW & NOTEWORTHY Traditionally, the cerebellum was considered essential for motor planning. By studying an extremely rare patient with cerebellar agenesis and a group of neurotypical controls, we found that high stages of the motor planning hierarchy can be preserved even in this patient with congenital absence of the cerebellum. Our results provide interesting insights that shed light on the neural circuits supporting distinct levels of motor planning. Furthermore, the results are intriguing because of their potential clinical implications in autism.
Asunto(s)
Cerebelo/fisiopatología , Cognición/fisiología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Anomalías Múltiples/patología , Adulto , Estudios de Casos y Controles , Cerebelo/anomalías , Cerebelo/patología , Anomalías del Ojo/patología , Humanos , Enfermedades Renales Quísticas/patología , Masculino , Persona de Mediana Edad , Retina/anomalías , Retina/patologíaRESUMEN
Two binding requirements for in vitro studies on long-term neuronal networks dynamics are (i) finely controlled environmental conditions to keep neuronal cultures viable and provide reliable data for more than a few hours and (ii) parallel operation on multiple neuronal cultures to shorten experimental time scales and enhance data reproducibility. In order to fulfill these needs with a Microelectrode Arrays (MEA)-based system, we designed a stand-alone device that permits to uninterruptedly monitor neuronal cultures activity over long periods, overcoming drawbacks of existing MEA platforms. We integrated in a single device: (i) a closed chamber housing four MEAs equipped with access for chemical manipulations, (ii) environmental control systems and embedded sensors to reproduce and remotely monitor the standard in vitro culture environment on the lab bench (i.e. in terms of temperature, air CO2 and relative humidity), and (iii) a modular MEA interface analog front-end for reliable and parallel recordings. The system has been proven to assure environmental conditions stable, physiological and homogeneos across different cultures. Prolonged recordings (up to 10 days) of spontaneous and pharmacologically stimulated neuronal culture activity have not shown signs of rundown thanks to the environmental stability and have not required to withdraw the cells from the chamber for culture medium manipulations. This system represents an effective MEA-based solution to elucidate neuronal network phenomena with slow dynamics, such as long-term plasticity, effects of chronic pharmacological stimulations or late-onset pathological mechanisms.
Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Microelectrodos , Neuronas/fisiología , Dióxido de Carbono/análisis , Células Cultivadas , Humedad , TemperaturaRESUMEN
Local acidosis is associated with neuro-inflammation and can have significant effects in several neurological disorders, including multiple sclerosis, brain ischemia, spinal cord injury and epilepsy. Despite local acidosis has been implicated in numerous pathological functions, very little is known about the modulatory effects of pathological acidosis on the activity of neuronal networks and on synaptic structural properties. Using non-invasive MRI spectroscopy we revealed protracted extracellular acidosis in the CNS of Experimental Autoimmune Encephalomyelitis (EAE) affected mice. By multi-unit recording in cortical neurons, we established that acidosis affects network activity, down-sizing firing and bursting behaviors as well as amplitudes. Furthermore, a protracted acidosis reduced the number of presynaptic terminals, while it did not affect the postsynaptic compartment. Application of the diarylamidine Diminazene Aceturate (DA) during acidosis significantly reverted both the loss of neuronal firing and bursting and the reduction of presynaptic terminals. Finally, in vivo DA delivery ameliorated the clinical disease course of EAE mice, reducing demyelination and axonal damage. DA is known to block acid-sensing ion channels (ASICs), which are proton-gated, voltage-insensitive, Na(+) permeable channels principally expressed by peripheral and central nervous system neurons. Our data suggest that ASICs activation during acidosis modulates network electrical activity and exacerbates neuro-degeneration in EAE mice. Therefore pharmacological modulation of ASICs in neuroinflammatory diseases could represent a new promising strategy for future therapies aimed at neuro-protection.
Asunto(s)
Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Canales Iónicos Sensibles al Ácido/metabolismo , Acidosis/metabolismo , Encéfalo/metabolismo , Diminazeno/análogos & derivados , Encefalomielitis Autoinmune Experimental/metabolismo , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Diminazeno/farmacología , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Ratones , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Terminales Presinápticos/efectos de los fármacos , Potenciales Sinápticos/efectos de los fármacosRESUMEN
BACKGROUND/OBJECTIVES: Rett syndrome is a rare neurodevelopmental disorder that can severely affect motor functioning, particularly walking. Previous training programs proposed treadmills as tools to increase walking endurance of patients with Rett syndrome, but these trainings did not include virtual reality (VR). The aim of this study was to assess the feasibility of a short treadmill training coupled to VR in girls with Rett syndrome. METHODS: Nine patients with Rett syndrome underwent a 3-day treadmill walking program performed in semi-immersive VR. During the training, the happiness index and performance metrics were collected. At the end of the training parents filled out the Suitability Evaluation Questionnaire (SEQ) and, when feasible, patients underwent a gait assessment. RESULTS: All the subjects recruited performed the three GRAIL sessions and parents showed a good satisfaction and considered the integration of treadmill and VR a good possibility for future rehabilitative programs. Participants showed greater satisfaction in environments requiring walking and their attention increased during training sessions, hypothesizing the feasibility of longer trainings with treadmill and VR. Data collected from gait analysis provided insights, although preliminary, concerning differences in gait pattern amongst the recruited subjects. CONCLUSIONS: Despite the small sample size and limited training duration, the paper suggests that a walking training with a treadmill combined with VR can represent a new strategy for Rett rehabilitation.
RESUMEN
This study tested the feasibility and efficacy of a Virtual Reality (VR) social prediction training (VR-Spirit) specifically designed for patients with congenital cerebellar malformation. The study is a randomised controlled trial in which 28 cerebellar patients aged 7-25 yo were randomly allocated to the VR-Spirit or to a control intervention in VR. The VR-Spirit required participants to compete with different avatars in scenarios that prompted them to form predictions about avatars' intentions. The control intervention consisted of games currently adopted for motor rehabilitation. Social prediction as well as secondary neuropsychological and behavioural outcomes were assessed at the beginning (T0), at the end (T2) and after 2 months (T3). The experimental group showed a significant increase, compared to the control participants, in social prediction assessed through a VR task. Moreover, at least at T3, the VR-Spirit enhanced the use of contextual predictions in a computer-based action prediction task. Importantly, these effects were generalized to secondary neuropsychological outcomes, specifically theory of mind and, only at T2, inhibition. No differences between the interventions were detected on emotional-behavioural problems. Lastly, both interventions showed high feasibility and acceptability. These findings confirm that it is possible to develop condition-specific rehabilitative training on the basis of neurocognitive functions impaired in case of congenital malformation. The VR-Spirit demonstrated to generalize its effects to theory of mind abilities, and it might be thus extended to other neurodevelopmental disorders that present social perception deficits and alterations of predictive processing.Trial registration: ISRCTN, ID: ISRCTN22332873. Retrospectively registered on 12 March 2018.
RESUMEN
BACKGROUND AND AIM: Patient-reported outcome measures (PROMs) are recognized as valuable measures in the clinical setting. In 2018 we developed the Italian version of the "Hereditary Spastic Paraplegia-Self Notion and Perception Questionnaire" (HSP-SNAP), a disease-specific questionnaire that collects personal perception on motor symptoms related to HSP such as stiffness, weakness, imbalance, reduced endurance, fatigue and pain. In this study our primary aim was to assess the questionnaire validity and reliability. Our secondary aim was to characterize the symptoms "perceived" by patients with HSP and compare them with those "perceived" by age-matched healthy subjects. METHODS: The 12-item HSP-SNAP questionnaire was submitted to 20 external judges for comprehensibility and to 15 external judges for content validity assessment. We recruited 40 subjects with HSP and asked them to fill the questionnaire twice for test-retest procedure. They also completed the Medical Outcome Survey Short Form (SF-36) and were evaluated by the Spastic Paraplegia Rating Scale and the Six-Minute Walk Test. We also recruited 44 healthy subjects who completed the HSP-SNAP once to test score variability. RESULTS: The HSP-SNAP content validity index was high (0.8±0.1) and the test-retest analysis showed high reliability (ICC = 0.94). The mean HSP-SNAP score (score range 0-48) of the HSP group was 22.2±7.8, which was significantly lower than healthy subjects (43.1±6.3). The most commonly perceived symptom was stiffness, followed by weakness and imbalance. CONCLUSION: Although HSP-SNAP does not investigate non-motor symptoms and we validated only its Italian version, it showed good validity and reliability and it could be used in combination with other objective outcome measures for clinical purposes or as endpoints for future clinical rehabilitation studies. TRIAL REGISTRATION: Trial Registration: ClinicalTrial.gov, NCT04256681. Registered 3 February 2020.
Asunto(s)
Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/diagnóstico , Reproducibilidad de los Resultados , Paraplejía , Medición de Resultados Informados por el Paciente , ItaliaRESUMEN
Accidents at work may force workers to face abrupt changes in their daily life: one of the most impactful accident cases consists of the worker remaining in a wheelchair. Return To Work (RTW) of wheelchair users in their working age is still challenging, encompassing the expertise of clinical and rehabilitation personnel and social workers to match the workers' residual capabilities with job requirements. This work describes a novel and prototypical knowledge-based Decision Support System (DSS) that matches workers' residual capabilities with job requirements, thus helping vocational therapists and clinical personnel in the RTW decision-making process for WUs. The DSS leverages expert knowledge in the form of ontologies to represent the International Classification of Functioning, Disability, and Health (ICF) and the Occupational Information Network (O*NET). These taxonomies enable both workers' health conditions and job requirements formalization, which are processed to assess the suitability of a job depending on a worker's condition. Consequently, the DSS suggests a list of jobs a wheelchair user can still perform, exploiting his/her residual abilities at their best. The manuscript describes the theoretical approach and technological foundations of such DSS, illustrating its development, its output metric, and application. The developed solution was tested with real wheelchair users' health conditions provided by the Italian National Institute for Insurance against Accidents at Work. The feasibility of an approach based on objective data was thus demonstrated, providing a novel point of view in the critical process of decision-making during RTW.
RESUMEN
Cerebral palsy poses challenges in walking, necessitating ankle foot orthoses (AFOs) for stability. Gait analysis, particularly on slopes, is crucial for effective AFO assessment. The study aimed to compare the performance of commercially available AFOs with a new sports-specific AFO in children with hemiplegic cerebral palsy and to assess the effects of varying slopes on gait. Eighteen participants, aged 6-11, with hemiplegia, underwent gait analysis using GRAIL technology. Two AFO types were tested on slopes (uphill +10 deg, downhill -5 deg, level-ground). Kinematic, kinetic, and spatiotemporal parameters were analyzed. The new AFO contributed to significant changes in ankle dorsi-plantar-flexion, foot progression, and trunk and hip rotation during downhill walking. Additionally, the new AFO had varied effects on spatiotemporal gait parameters, with an increased stride length during downhill walking. Slope variations significantly influenced the kinematics and kinetics. This study provides valuable insights into AFO effectiveness and the impact of slopes on gait in hemiplegic cerebral palsy. The findings underscore the need for personalized interventions, considering environmental factors, and enhancing clinical and research approaches for improving mobility in cerebral palsy.
RESUMEN
The tradeoff between speed and accuracy is a well-known constraint for human movement, but previous work has shown that this tradeoff can be modified by practice, and the quantitative relationship between speed and accuracy may be an indicator of skill in some tasks. We have previously shown that children with dystonia are able to adapt their movement strategy in a ballistic throwing game to compensate for increased variability of movement. Here we test whether children with dystonia can adapt and improve skill learnt on a trajectory task. We use a novel task in which children move a spoon with a marble between two targets. Difficulty is modified by changing the depth of the spoon. Our results show that both healthy children and children with secondary dystonia move more slowly with the more difficult spoons, and both groups improve the relationship between speed and spoon difficulty following one week of practice. By tracking the marble position in the spoon, we show that children with dystonia use a larger fraction of the available variability, whereas healthy children adopt a much safer strategy and remain farther from the margins, as well as learning to adopt and have more control over the marble's utilized area by practice. Together, our results show that both healthy children and children with dystonia choose trajectories that compensate for risk and inherent variability, and that the increased variability in dystonia can be modified with continued practice.
RESUMEN
Beyond classical aspects related to locomotion (biomechanics), it has been hypothesized that walking pattern is influenced by a combination of distinct computations including online sensory/perceptual sampling and the processing of expectations (neuromechanics). Here, we aimed to explore the potential impact of contrasting scenarios ("risky and potentially dangerous" scenario; "safe and comfortable" scenario) on walking pattern in a group of healthy young adults. Firstly, and consistently with previous literature, we confirmed that the scenario influences gait pattern when it is recalled concurrently to participants' walking activity (motor interference). More intriguingly, our main result showed that participants' gait pattern is also influenced by the contextual scenario when it is evoked only before the start of walking activity (motor expectation). This condition was designed to test the impact of expectations (risky scenario vs. safe scenario) on gait pattern, and the stimulation that preceded walking activity served as prior. Noteworthy, we combined statistical and machine learning (Support-Vector Machine classifier) approaches to stratify distinct levels of analyses that explored the multi-facets architecture of walking. In a nutshell, our combined statistical and machine learning analyses converge in suggesting that walking before steps is not just a paradox.
Asunto(s)
Marcha , Motivación , Adulto Joven , Humanos , Fenómenos Biomecánicos , Marcha/fisiología , Caminata/fisiología , ArticulacionesRESUMEN
Social cognition is fundamental in everyday life to understand "others' behavior", which is a key feature of social abilities. Previous studies demonstrated the efficacy of a rehabilitative intervention in semi-immersive virtual reality (VR) controlled by whole-body motion to improve the ability of patients with cerebellar disorders to predict others' intentions (VR-SPIRIT). Patients with severe ataxia that have difficulties at multiple levels of social processing could benefit from this intervention in terms of improving their social prediction skills, but they may have difficulties in controlling VR with whole-body movements. Therefore, we implemented VR-SPIRIT on a wearable, affordable, and easy-to-use technology, such as the Oculus Quest, a head-mounted display. The aim of this work was to evaluate the usability and tolerability of this VR application. We recruited 10 patients (37.7 ± 14.8 years old, seven males) with different types of hereditary ataxia who performed a single VR-SPIRIT session using the Oculus Quest viewer. After the session, patients answered a series of questionnaires to investigate the overall usability of the system and its potential effects in terms of cyber sickness. The preliminary results demonstrated system usability and tolerability. Indeed, only three patients did not complete the session due to different problems (dizziness, nausea, and boredom). In future studies, more patients will be enrolled to assess the effectiveness of the application, paving the way for the implementation of social training that can also be delivered at home.