Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Artículo en Inglés | MEDLINE | ID: mdl-37672376

RESUMEN

Learning probabilistic models that can estimate the density of a given set of samples, and generate samples from that density, is one of the fundamental challenges in unsupervised machine learning. We introduce a new generative model based on denoising density estimators (DDEs), which are scalar functions parametrized by neural networks, that are efficiently trained to represent kernel density estimators of the data. Leveraging DDEs, our main contribution is a novel technique to obtain generative models by minimizing the Kullback-Leibler (KL)-divergence directly. We prove that our algorithm for obtaining generative models is guaranteed to converge consistently to the correct solution. Our approach does not require specific network architecture as in normalizing flows (NFs), nor use ordinary differential equation (ODE) solvers as in continuous NFs. Experimental results demonstrate substantial improvement in density estimation and competitive performance in generative model training.

2.
PLoS One ; 18(1): e0252002, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36602982

RESUMEN

Tail biting is a damaging behaviour that impacts the welfare and health of pigs. Early detection of precursor signs of tail biting provides the opportunity to take preventive measures, thus avoiding the occurrence of the tail biting event. This study aimed to build a machine-learning algorithm for real-time detection of upcoming tail biting outbreaks, using feeding behaviour data recorded by an electronic feeder. Prediction capacities of seven machine learning algorithms (Generalized Linear Model with Stepwise Feature Selection, random forest, Support Vector Machines with Radial Basis Function Kernel, Bayesian Generalized Linear Model, Neural network, K-nearest neighbour, and Partial Least Squares Discriminant Analysis) were evaluated from daily feeding data collected from 65 pens originating from two herds of grower-finisher pigs (25-100kg), in which 27 tail biting events occurred. Data were divided into training and testing data in two different ways, either by randomly splitting data into 75% (training set) and 25% (testing set), or by randomly selecting pens to constitute the testing set. In the first data splitting, the model is regularly updated with previous data from the pen, whereas in the second data splitting, the model tries to predict for a pen that it has never seen before. The K-nearest neighbour algorithm was able to predict 78% of the upcoming events with an accuracy of 96%, when predicting events in pens for which it had previous data. Our results indicate that machine learning models can be considered for implementation into automatic feeder systems for real-time prediction of tail biting events.


Asunto(s)
Conducta Animal , Mordeduras y Picaduras , Porcinos , Animales , Cola (estructura animal)/lesiones , Teorema de Bayes , Mordeduras y Picaduras/epidemiología , Crianza de Animales Domésticos/métodos , Bienestar del Animal , Conducta Alimentaria , Algoritmos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda