Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mol Cell ; 84(13): 2490-2510.e9, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996459

RESUMEN

The formation of dynamic protein filaments contributes to various biological functions by clustering individual molecules together and enhancing their binding to ligands. We report such a propensity for the BTB domains of certain proteins from the ZBTB family, a large eukaryotic transcription factor family implicated in differentiation and cancer. Working with Xenopus laevis and human proteins, we solved the crystal structures of filaments formed by dimers of the BTB domains of ZBTB8A and ZBTB18 and demonstrated concentration-dependent higher-order assemblies of these dimers in solution. In cells, the BTB-domain filamentation supports clustering of full-length human ZBTB8A and ZBTB18 into dynamic nuclear foci and contributes to the ZBTB18-mediated repression of a reporter gene. The BTB domains of up to 21 human ZBTB family members and two related proteins, NACC1 and NACC2, are predicted to behave in a similar manner. Our results suggest that filamentation is a more common feature of transcription factors than is currently appreciated.


Asunto(s)
Dominio BTB-POZ , Factores de Transcripción , Proteínas de Xenopus , Animales , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Cristalografía por Rayos X , Células HEK293 , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/química , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Xenopus laevis , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/química
2.
EMBO J ; 43(14): 2929-2953, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834853

RESUMEN

PARP-catalysed ADP-ribosylation (ADPr) is important in regulating various cellular pathways. Until recently, PARP-dependent mono-ADP-ribosylation has been poorly understood due to the lack of sensitive detection methods. Here, we utilised an improved antibody to detect mono-ADP-ribosylation. We visualised endogenous interferon (IFN)-induced ADP-ribosylation and show that PARP14 is a major enzyme responsible for this modification. Fittingly, this signalling is reversed by the macrodomain from SARS-CoV-2 (Mac1), providing a possible mechanism by which Mac1 counteracts the activity of antiviral PARPs. Our data also elucidate a major role of PARP9 and its binding partner, the E3 ubiquitin ligase DTX3L, in regulating PARP14 activity through protein-protein interactions and by the hydrolytic activity of PARP9 macrodomain 1. Finally, we also present the first visualisation of ADPr-dependent ubiquitylation in the IFN response. These approaches should further advance our understanding of IFN-induced ADPr and ubiquitin signalling processes and could shed light on how different pathogens avoid such defence pathways.


Asunto(s)
ADP-Ribosilación , Interferones , Poli(ADP-Ribosa) Polimerasas , Ubiquitina-Proteína Ligasas , Humanos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Interferones/metabolismo , Ubiquitinación , Células HEK293 , SARS-CoV-2/metabolismo , Transducción de Señal , COVID-19/virología , COVID-19/metabolismo , Proteínas de Neoplasias
3.
Mol Biol Cell ; 35(3): br7, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38170578

RESUMEN

ADP-ribosylation signaling orchestrates the recruitment of various repair actors and chromatin remodeling processes promoting access to lesions during the early stages of the DNA damage response. The chromatin remodeler complex ACF, composed of the ATPase subunit SMARCA5/SNF2H and the cofactor ACF1/BAZ1A, is among the factors that accumulate at DNA lesions in an ADP-ribosylation dependent manner. In this work, we show that each subunit of the ACF complex accumulates to DNA breaks independently from its partner. Furthermore, we demonstrate that the recruitment of SMARCA5 and ACF1 to sites of damage is not due to direct binding to the ADP-ribose moieties but due to facilitated DNA binding at relaxed ADP-ribosylated chromatin. Therefore, our work provides new insights regarding the mechanisms underlying the timely accumulation of ACF1 and SMARCA5 to DNA lesions, where they contribute to efficient DNA damage resolution.


Asunto(s)
Cromatina , Daño del ADN , ADN/metabolismo , Adenosina Trifosfatasas/metabolismo , Reparación del ADN , ADP-Ribosilación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda