RESUMEN
As climate change and rapid urbanization stress our aging water infrastructure, cities are under increasing pressure to develop more flexible, resilient, and modular water management systems. In response, onsite water reuse practices have been adopted by several cities globally. In addition to technological innovation, these novel water treatment systems also require new stakeholder collaborations, relationships, and processes to support them. There are, however, few models for stakeholder arrangements that support and encourage the adoption and success of such infrastructure. In this paper, we use interviews with stakeholders involved in onsite water reuse projects in the San Francisco Bay Area to create a social network map that describes the interactions between stakeholders at large and during specific phases of project implementation. Using qualitative content analysis of expert interviews and social network analysis, we identify four actor roles that are key to the functioning of this novel water infrastructure paradigmâspecialists, continuity providers, program champions, and convenersâand discuss the importance of each role through the course of project implementation. These findings can be helpful for policy interventions and outreach efforts by other cities and communities looking to implement onsite water systems.
Asunto(s)
Purificación del Agua , San Francisco , Ciudades , Urbanización , Cambio ClimáticoRESUMEN
Scientists are increasingly exploring on-site water systems to supplement conventional centralized water and wastewater infrastructure. While major technological advancements have been achieved, we still lack a systematic view on the non-technical, or institutional, elements that constitute important barriers to the uptake of on-site urban water management systems. This paper presents a conceptual framework distinguishing between institutional barriers in six key dimensions: Equity, Knowledge and Capabilities, Financial Investment, Legal and Regulatory Frameworks, Legitimacy, and Market Structures. The analysis of the existing literature covering these barriers is translated into a typology of the socio-technical complexity of different types of alternative water systems (e.g., non-potable reuse, rainwater systems, and nutrient recovery). Findings show that socio-technical complexity increases with the pollution load in the source water, correlating to potential health risk, and the number of sectors involved in the value chain of an alternative water system. For example, greywater reuse for toilet flushing might have systematically less complex institutional barriers than source separation for agricultural reuse. This study provides practitioners with easily accessible means of understanding non-technical barriers for various types of on-site reuse systems and provides researchers with a conceptual framework for capturing socio-technical complexity in the adoption of alternative water systems.
Asunto(s)
Aguas Residuales , Agua , Abastecimiento de AguaRESUMEN
Recent developments in high- and middle-income countries have exhibited a shift from conventional urban water systems to alternative solutions that are more diverse in source separation, decentralization, and modularization. These solutions include nongrid, small-grid, and hybrid systems to address such pressing global challenges as climate change, eutrophication, and rapid urbanization. They close loops, recover valuable resources, and adapt quickly to changing boundary conditions such as population size. Moving to such alternative solutions requires both technical and social innovations to coevolve over time into integrated socio-technical urban water systems. Current implementations of alternative systems in high- and middle-income countries are promising, but they also underline the need for research questions to be addressed from technical, social, and transformative perspectives. Future research should pursue a transdisciplinary research approach to generating evidence through socio-technical "lighthouse" projects that apply alternative urban water systems at scale. Such research should leverage experiences from these projects in diverse socio-economic contexts, identify their potentials and limitations from an integrated perspective, and share their successes and failures across the urban water sector.
Asunto(s)
Urbanización , Agua , Cambio Climático , Predicción , Población UrbanaRESUMEN
In many regions of the world, urban water systems will need to transition into fundamentally different forms to address current stressors and meet impending challenges-faster innovation will need to be part of these transitions. To assess the innovation deficit in urban water organizations and to identify means for supporting innovation, we surveyed wastewater utility managers in California. Our results reveal insights about the attitudes towards innovation among decision makers, and how perceptions at the level of individual managers might create disincentives for experimentation. Although managers reported feeling relatively unhindered organizationally, they also spend less time on innovation than they feel they should. The most frequently reported barriers to innovation included cost and financing; risk and risk aversion; and regulatory compliance. Considering these results in the context of prior research on innovation systems, we conclude that collective action may be required to address underinvestment in innovation.
Asunto(s)
Toma de Decisiones en la Organización , Innovación Organizacional , Urbanización , Aguas Residuales/análisis , Purificación del Agua/métodos , Recursos Hídricos/provisión & distribución , Actitud , California , Encuestas y CuestionariosRESUMEN
Water resource managers often tout the potential of potable water reuse to provide a reliable, local source of drinking water in water-scarce regions. Despite data documenting the ability of advanced treatment technologies to treat municipal wastewater effluent to meet existing drinking water quality standards, many utilities face skepticism from the public about potable water reuse. Prior research on this topic has mainly focused on marketing strategies for garnering public acceptance of the process. This study takes a broader perspective on the adoption of potable water reuse based on concepts of societal legitimacy, which is the generalized perception or assumption that a technology is desirable or appropriate within its social context. To assess why some potable reuse projects were successfully implemented while others faced fierce public opposition, we performed a series of 20 expert interviews and reviewed in-depth case studies from potable reuse projects in California. Results show that proponents of a legitimated potable water reuse project in Orange County, California engaged in a portfolio of strategies that addressed three main dimensions of legitimacy. In contrast, other proposed projects that faced extensive public opposition relied on a smaller set of legitimation strategies that focused near-exclusively on the development of robust water treatment technology. Widespread legitimation of potable water reuse projects, including direct potable water reuse, may require the establishment of a portfolio of standards, procedures, and possibly new institutions.
Asunto(s)
Agua Potable , Reciclaje , California , Aguas Residuales , Abastecimiento de Agua/normasRESUMEN
Urban water scarcity has been an issue for a long time in China while water pollution has attracted more and more attention over the last two decades. Recently, on-site wastewater treatment (OST) has been proposed as a meaningful alternative to deal with both water pollution and water scarcity in cities in a more sustainable way. However, the diffusion of such an OST system is still slow and often hindered by mismatched regulation, city planning and policy interventions. This paper is intended to explore potential solutions from institutional and governance perspectives. Based on expert interviews and in-depth analysis of an OST system in Kunming, an improved trajectory for diffusing OST in urban China is developed, which includes reformed decision-making and operational procedures, role transition of relevant stakeholders, and improved financing mechanisms. The results might give some suggestions for the transition of urban water management in other newly industrializing countries.