Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Semin Cell Dev Biol ; 144: 11-19, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36202693

RESUMEN

The world population's life expectancy is growing, and neurodegenerative disorders common in old age require more efficient therapies. In this context, neural stem cells (NSCs) are imperative for the development and maintenance of the functioning of the nervous system and have broad therapeutic applicability for neurodegenerative diseases. Therefore, knowing all the mechanisms that govern the self-renewal, differentiation, and cell signaling of NSC is necessary. This review will address some of these aspects, including the role of growth and transcription factors, epigenetic modulators, microRNAs, and extracellular matrix components. Furthermore, differentiation and transdifferentiation processes will be addressed as therapeutic strategies showing their significance for stem cell-based therapy.


Asunto(s)
MicroARNs , Células-Madre Neurales , Diferenciación Celular , Neurogénesis/fisiología , Neuronas , MicroARNs/genética
2.
Semin Cell Dev Biol ; 144: 3-10, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36192310

RESUMEN

Organoid development and organ-on-a-chip are technologies based on differentiating stem cells, forming 3D multicellular structures resembling organs and tissues in vivo. Hence, both can be strategically used for disease modeling, drug screening, and host-pathogen studies. In this context, this review highlights the significant advancements in the area, providing technical approaches to organoids and organ-on-a-chip that best imitate in vivo physiology.


Asunto(s)
Biomimética , Organoides , Sistemas Microfisiológicos , Células Madre
3.
Semin Cell Dev Biol ; 144: 87-96, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36182613

RESUMEN

Infectious diseases worldwide affect human health and have important societal impacts. A better understanding of infectious diseases is urgently needed. In vitro and in vivo infection models have brought notable contributions to the current knowledge of these diseases. Organoids are multicellular culture systems resembling tissue architecture and function, recapitulating many characteristics of human disease and elucidating mechanisms of host-infectious agent interactions in the respiratory and gastrointestinal systems, the central nervous system and the skin. Here, we discuss the applicability of the organoid technology for modeling pathogenesis, host response and features, which can be explored for the development of preventive and therapeutic treatments.


Asunto(s)
Enfermedades Transmisibles , Organoides , Humanos , Tracto Gastrointestinal
4.
J Med Virol ; 96(2): e29416, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38285457

RESUMEN

The raising of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants led to the use of COVID-19 bivalent vaccines, which include antigens of the wild-type (WT) virus, and of the Omicron strain. In this study, we aimed to evaluate the impact of bivalent vaccination on the neutralizing antibody (NAb) response. We enrolled 93 volunteers who had received three or four doses of monovalent vaccines based on the original virus (n = 61), or a booster shot with the bivalent vaccine (n = 32). Serum samples collected from volunteers were subjected to neutralization assays using the WT SARS-CoV-2, and Omicron subvariants. In addition, immunoinformatics to quantify and localize highly conserved NAb epitopes were performed. As main result, we observed that the neutralization titers of samples from individuals vaccinated with the bivalent vaccine were higher for the original virus, in comparison to their capacity of neutralizing the Omicron variant and its subvariants. NAb that recognize epitopes mostly conserved in the WT SARS-CoV-2 were boosted, while those that recognize epitopes mostly present in the Omicron variant, and subvariants were primed. These results indicate that formulation of future vaccines shall consider to target present viruses, and not viruses that no longer circulate.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2/genética , Vacunación , Inmunización Secundaria , Anticuerpos Neutralizantes , Epítopos/genética , Vacunas Combinadas
5.
Neurochem Res ; 49(1): 170-183, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37684384

RESUMEN

The glutamatergic hypothesis of schizophrenia suggests a correlation between NMDA receptor hypofunction and negative psychotic symptoms. It has been observed that the expression of the proline transporter (PROT) in the central nervous system (CNS) is associated with glutamatergic neurotransmission, as L-proline has the capacity to activate and modulate AMPA and NMDA receptors. In this study, we aimed to investigate whether inhibition of proline transporters could enhance glutamatergic neurotransmission and potentially exhibit antipsychotic effects in an experimental schizophrenia model. Using molecular dynamics analysis in silico, we validated an innovative PROT inhibitor, LQFM215. We quantified the cytotoxicity of LQFM215 in the Lund human mesencephalic cell line (LUHMES). Subsequently, we employed the ketamine-induced psychosis model to evaluate the antipsychotic potential of the inhibitor, employing behavioral tests including open-field, three-chamber interaction, and prepulse inhibition (PPI). Our results demonstrate that LQFM215, at pharmacologically active concentrations, exhibited negligible neurotoxicity when astrocytes were co-cultured with neurons. In the ketamine-induced psychosis model, LQFM215 effectively reduced hyperlocomotion and enhanced social interaction in a three-chamber social approach task across all administered doses. Moreover, the compound successfully prevented the ketamine-induced disruption of sensorimotor gating in the PPI test at all tested doses. Overall, these findings suggest that PROT inhibition could serve as a potential therapeutic target for managing symptoms of schizophrenia model.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Antipsicóticos , Ketamina , Esquizofrenia , Humanos , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Esquizofrenia/inducido químicamente , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Ketamina/farmacología , Ketamina/uso terapéutico , Sistemas de Transporte de Aminoácidos Neutros/uso terapéutico , Receptores de N-Metil-D-Aspartato
6.
BMC Geriatr ; 24(1): 99, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38273281

RESUMEN

BACKGROUND: Older adults, as the population considered at increased risk for severe COVID-19, were the most impacted by social isolation. Thus, this study aimed to assess the salivary immune/inflammatory response of older adults before and during the COVID-19 pandemic. METHODS: A cohort of 11 older adults (mean age 66.8 ± 6.1) was followed at three different time points: before (S1) and after 6 (S2) and 20 months (S3) of the beginning of the COVID-19 pandemic in Brazil. Unstimulated saliva samples were obtained to assess the levels of antibodies (secretory IgA, IgG and IgM) by ELISA and cytokines (IL-2, IL-5, IL-6, IL-8 and IL-10, TSLP, IFN-γ, TNF-α) by multiplex analysis. Significant differences were evaluated using the Kruskal-Wallis test with Dunn's post-test. RESULTS: None volunteer presented periodontal disease or caries. All volunteers received at least two doses of the COVID-19 vaccines after S2 and before S3. A tendency to increase salivary levels of SIgA and IgM at S2 and of IgG at S3 were observed compared to the values found at S1 and S2. Significantly decreased levels of IL-2 and IL-5 were found at S2 and S3 (p < 0.001) time points. Lower levels of IFN-γ were found at S2 as compared to the values observed at S1 (p < 0.01). A significant decrease in the IFN-γ/IL-10 ratio was found at S2 (p < 0.01). When assessing the Th1/Th2 ratios, a significant decrease was found in the IFN-γ/TSLP ratio at S2 (p < 0.001) and S3 (p < 0.001) when compared to the values at S1. In addition, a significant increase was observed in the TNF-α/IL-5 ratio at S2 (p < 0.001) and S3 (p < 0.001) in comparison to the values at S1. In a similar way, an increase in the TNF-α/IL-6 ratio (Fig. 5E) was observed at S3 (p < 0.001) when compared to the values at S1. CONCLUSIONS: Overall, this study provides valuable insights into the impact of COVID-19-induced social isolation on immune/inflammatory responses in the upper airway mucosa, particularly those present in oral cavity, of older adults. It demonstrates that a controlled shift in Th1 and Th2 immune responses, both during infection and post-vaccination, can create favorable conditions to combat viral infections without exacerbating the immune response or worsening the pathology.


Asunto(s)
COVID-19 , Humanos , Anciano , Interleucina-10 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Vacunas contra la COVID-19 , Pandemias , Distanciamiento Físico , Interleucina-2 , Interleucina-5 , Inmunoglobulina G , Inmunoglobulina M
7.
Angiogenesis ; 26(1): 129-166, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36183032

RESUMEN

Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Understanding the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment. Using in vivo inducible Cre/loxP mediated systems, we demonstrated that these cells derive from tissue-resident Schwann cells. Genetic ablation of endogenous Schwann cells slowed down tumor growth and angiogenesis. Schwann cell-specific depletion also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of tumor biopsies revealed that increased expression of Schwann cell-related genes within melanoma was associated with improved survival. Collectively, our study suggests that Schwann cells regulate tumor progression, indicating that manipulation of Schwann cells may provide a valuable tool to improve cancer patients' outcomes.


Asunto(s)
Neoplasias , Neuroglía , Humanos , Estudios Retrospectivos , Neuroglía/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patología , Pericitos , Microambiente Tumoral/fisiología , Neoplasias/patología
8.
J Virol ; 96(8): e0017722, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35389263

RESUMEN

A third vaccine dose against COVID-19 is already a reality in some countries around the world. In this study, we aimed to evaluate the effectiveness of the Brazilian immunization policy for COVID-19, which involves a booster shot. Participants (n = 210) provided serum samples, which were subjected to enzyme-linked immunosorbent assay (ELISA). Immunological profiles were defined as individuals with or without previous SARS-CoV-2 infection who received at least one vaccine dose in the immunization regimens of AstraZeneca, CoronaVac, or CoronaVac plus a booster shot with Pfizer. In addition, nonvaccinated/infected individuals were also included. As main results, we observed that the numbers of infected individuals were significantly reduced among those who were vaccinated, even with one dose. This result indicates that vaccines are highly protective against COVID-19. However, we observed a significant tendency of serum level decreases of specific antibodies over the time after the second dose. In contrast, the booster shot with the Pfizer vaccine after a CoronaVac immunization regimen showed a significant increase in the specific SARS-CoV-2 IgG serum levels. Moreover, we found that vaccination induced a significantly higher humoral immunological status than only the natural infection with SARS-CoV-2. Collectively, results presented here indicate that vaccines are necessary to induce a robust immunological status, which is maintained, restored, or even improved by booster shots. IMPORTANCE COVID-19 continues to spread around the world despite significant progress in vaccine distribution and population immunity. The dynamics of the antiviral antibody response postvaccination is critical to evaluate vaccine effectiveness across different vaccine platforms and over time. In this study, we evaluate the serum levels of antiviral antibodies in patients from Brazil that received either the CoronaVac or the AstraZeneca vaccine. We found that antibody levels wane over time, vaccines induce protective immunity, and humoral immunity is enhanced with a third vaccine dose. This study reveals that the COVID-19 humoral immunological status induced by vaccines significantly benefits from a booster shot.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/normas , Humanos , SARS-CoV-2/inmunología
9.
J Med Virol ; 95(2): e28481, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36609686

RESUMEN

The main coronavirus disease 2019 (COVID-19) vaccine formulations used today are mainly based on the wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein as an antigen. However, new virus variants capable of escaping neutralization activity of serum antibodies elicited in vaccinated individuals have emerged. The Omicron (B.1.1.529) variant caused epidemics in regions of the world in which most of the population has been vaccinated. In this study, we aimed to understand what determines individual's susceptibility to Omicron in a scenario of extensive vaccination. For that purpose, we collected nasopharynx swab (n = 286) and blood samples (n = 239) from flu-like symptomatic patients, as well as their vaccination history against COVID-19. We computed the data regarding vaccine history, COVID-19 diagnosis, COVID-19 serology, and viral genome sequencing to evaluate their impact on the number of infections. As main results, we showed that vaccination in general did not reduce the number of individuals infected by Omicron, even with an increased immune response found among vaccinated, noninfected individuals. Nonetheless, we found that individuals who received the third vaccine dose showed significantly reduced susceptibility to Omicron infections. A relevant evidence that support this finding was the higher virus neutralization capacity of serum samples of most patients who received the third vaccine dose. In summary, this study shows that boosting immune responses after a third vaccine dose reduces susceptibility to COVID-19 caused by the Omicron variant. Results presented in this study are useful for future formulations of COVID-19 vaccination policies.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Prueba de COVID-19 , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
10.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37834295

RESUMEN

Prostate cancer (PCa) has a high prevalence and represents an important health problem, with an increased risk of metastasis. With the advance of CRISPR-Cas9 genome editing, new possibilities have been created for investigating PCa. The technique is effective in knockout oncogenes, reducing tumor resistance. MMP9 and miR-21 target genes are associated with PCa progression; therefore, we evaluated the MMP-9 and miR-21 targets in PCa using the CRISPR-Cas9 system. Single guide RNAs (sgRNAs) of MMP9 and miR-21 sequences were inserted into a PX-330 plasmid, and transfected in DU145 and PC-3 PCa cell lines. MMP9 and RECK expression was assessed by qPCR, WB, and IF. The miR-21 targets, integrins, BAX and mTOR, were evaluated by qPCR. Flow cytometry was performed with Annexin5, 7-AAD and Ki67 markers. Invasion assays were performed with Matrigel. The miR-21 CRISPR-Cas9-edited cells upregulated RECK, MARCKS, BTG2, and PDCD4. CDH1, ITGB3 and ITGB1 were increased in MMP9 and miR-21 CRISPR-Cas9-edited cells. Increased BAX and decreased mTOR were observed in MMP9 and miR-21 CRISPR-Cas9-edited cells. Reduced cell proliferation, increased apoptosis and low invasion in MMP9 and miR-21 edited cells was observed, compared to Scramble. CRISPR-Cas9-edited cells of miR-21 and MMP9 attenuate cell proliferation, invasion and stimulate apoptosis, impeding PCa evolution.


Asunto(s)
Proteínas Inmediatas-Precoces , MicroARNs , Neoplasias de la Próstata , Masculino , Humanos , Edición Génica , Sistemas CRISPR-Cas/genética , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Proteína X Asociada a bcl-2/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , MicroARNs/genética , MicroARNs/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas Supresoras de Tumor/genética , Proteínas de Unión al ARN/metabolismo
11.
World J Microbiol Biotechnol ; 39(9): 235, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37365380

RESUMEN

Intestinal mucositis is a commonly reported side effect in oncology patients undergoing chemotherapy and radiotherapy. Probiotics, prebiotics, and synbiotics have been investigated as alternative therapeutic approaches against intestinal mucositis due to their well-known anti-inflammatory properties and health benefits to the host. Previous studies showed that the potential probiotic Lactobacillus delbrueckii CIDCA 133 and the prebiotic Fructooligosaccharides (FOS) alleviated the 5-Fluorouracil (5-FU) chemotherapy-induced intestinal mucosa damage. Based on these previous beneficial effects, this work evaluated the anti-inflammatory property of the synbiotic formulation containing L. delbrueckii CIDCA 133 and FOS in mice intestinal mucosa inflammation induced by 5-FU. This work showed that the synbiotic formulation was able to modulate inflammatory parameters, including reduction of cellular inflammatory infiltration, gene expression downregulation of Tlr2, Nfkb1, and Tnf, and upregulation of the immunoregulatory Il10 cytokine, thus protecting the intestinal mucosa from epithelial damage caused by the 5-FU. The synbiotic also improved the epithelial barrier function by upregulating mRNA transcript levels of the short chain fatty acid (SCFA)-associated GPR43 receptor and the occludin tight junction protein, with the subsequent reduction of paracellular intestinal permeability. The data obtained showed that this synbiotic formulation could be a promising adjuvant treatment to be explored against inflammatory damage caused by 5-FU chemotherapy.


Asunto(s)
Antineoplásicos , Lactobacillus delbrueckii , Mucositis , Probióticos , Simbióticos , Ratones , Animales , Mucositis/inducido químicamente , Mucositis/tratamiento farmacológico , Mucositis/prevención & control , Probióticos/farmacología , Mucosa Intestinal , Prebióticos/efectos adversos , Fluorouracilo/efectos adversos , Antineoplásicos/farmacología
12.
Dev Biol ; 470: 37-48, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33152274

RESUMEN

Mesenchymal stem cells are candidates for therapeutic strategies in periodontal repair due to their osteogenic potential. In this study, we identified epigenetic markers during osteogenic differentiation, taking advantage of the individual pattern of mesenchymal cells of the periodontal ligament with high (h-PDLCs) and low (l-PDLCs) osteogenic capacity. We found that the involvement of non-coding RNAs in the regulation of the RUNX2 gene is strongly associated with high osteogenic potential. Moreover, we evaluated miRs and genes that encode enzymes to process miRs and their biogenesis. Our data show the high expression of the XPO5 gene, and miRs 7 and 22 observed in the l-PDLCs might be involved in acquiring osteogenic potential, suppressing RUNX2 gene expression. Further, an inversely proportional correlation between lncRNAs (HOTAIR and HOTTIP) and RUNX2 gene expression was observed in both l- and h-PDLCs, and it was also related to the distinct osteogenic phenotypes. Thus, our results indicate the low expression of XPO5 in h-PDLC might be the limiting point for blocking the miRs biogenesis, allowing the high gene expression of RUNX2. In accordance, the low expression of miRs, HOTAIR, and HOTTIP could be a prerequisite for increased osteogenic potential in h-PDLCs. These results will help us to better understand the underlying mechanisms of osteogenesis, considering the heterogeneity in the osteogenic potential of PDLCs that might be related to a distinct transcriptional profile of lncRNAs and the biogenesis machinery.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Células Madre Mesenquimatosas/fisiología , MicroARNs/metabolismo , Osteogénesis , Ligamento Periodontal/citología , Procesamiento Postranscripcional del ARN , ARN Largo no Codificante/metabolismo , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Carioferinas/genética , Carioferinas/metabolismo , MicroARNs/genética , Ligamento Periodontal/metabolismo , Fenotipo , ARN Largo no Codificante/genética , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo , Transcripción Genética , Transcriptoma , Adulto Joven
13.
J Cell Physiol ; 237(4): 2198-2210, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35040139

RESUMEN

Pericytes and glial cells are known to collaborate in dental pulp tissue repair. Cell-based therapies that stimulate these stromal components may be of therapeutic relevance for partially vital dental pulp conditions. This study aimed to examine the early effect of photobiomodulation (PBM) in pericytes from experimentally injured pulp tissue. To accomplish this, we used the Nestin-GFP/NG2-DsRed mice, which could allow the identification of distinct pericyte phenotypes. We discovered the presence of two pericytes subsets within the dental pulp, the Nestin + NG2+ (type-2) and Nestin- NG2+ (type-1). Upon injury, PBM treatment led to a significant increase in Nestin+ cells and pericytes. This boost was mainly conferred by the more committed pericyte subset (NestinNG2+ ). PBM also stimulated terminal blood vessels sprouting adjacent to the injury site while maintaining signs of pulp vitality. In vitro, PBM induced VEGF upregulation, improved dental pulp cells proliferation and migration, and favored their mineralization potential. Herein, different subsets of perivascular cells were unveiled in the pulp tissue. PBM enhanced not only NG2+ cells but nestin-expressing progenitors in the injured dental pulp.


Asunto(s)
Pulpa Dental/citología , Neuroglía , Pericitos , Animales , Ratones , Nestina/genética , Transgenes
14.
Cell Physiol Biochem ; 56(S4): 1-15, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36458578

RESUMEN

BACKGROUND/AIMS: Cholesterol modulates intratumoral androgenic signaling in prostate cancer; however, the molecular mechanisms underlying these changes in castration-resistant prostate cancer (CRPC) are not fully elucidated. Herein, we investigated the effect of cholesterol on androgen receptor (AR) coactivators expression and tumorigenesis in vitro and in vivo. METHODS: Herein, we monitored the expression of AR coactivators (SRC-1, 2, 3 and PCAF) genes in PC-3 cells exposed to 2µg/mL of cholesterol for 8 hours by qPCR. We also performed cell migration at 0, 8, 24, 48 and 72h and flow cytometry assays (viability, apoptosis, and cell cycle) after a 24h exposure. Immunofluorescence assay was performed to evaluate the protein expression of the AR coactivators. Additionally, in vivo experiments were conducted using 22 male NOD/SCID mice. Mice were fed a standard (Control) or hypercholesterolemic (HCOL) diet for 21 days and then subcutaneously implanted with PC-3 cells. The tumor volume was calculated every two days, and after four weeks, the tumors were resected, weighed, and the serum lipid profile was measured. We also measured the intratumoral lipid profile and AR coactivators gene and protein expression by qPCR and Western Blot, respectively. Intratumor testosterone and dihydrotestosterone (DHT) concentrations were determined using ELISA. RESULTS: Cholesterol up-regulated the gene expression of coactivators SRC-1, SRC-2, SRC-3and PCAF, increasing AR expression in PC-3 cells. Next, cholesterol-supplemented PC-3 cells exhibited increased cell migration and altered cell cycle phases, leading to changes in proliferation and reduced apoptosis. We found that SRC-1, SRC-2, SRC-3 and PCAF proteins co-localized in the nucleus of cholesterol-supplemented cells and co-associate with AR. In the in vivo model, the hypercholesterolemic (HCOL) group displayed higher serum total and intratumoral cholesterol levels, increased testosterone and dihydrotestosterone concentrations, and up-regulated AR coactivator expression. The tumor volume of the HCOL group was significantly higher than the control group. CONCLUSION: Our findings revealed that increased nuclear translocation of the coactivators leads to up-regulated AR gene and protein expression, potentially influencing tumor progression. Studies targeting cholesterol-modulated changes in AR coactivator expression may provide insights into the molecular mechanisms associated with the CRPC phenotype.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Ratones , Animales , Humanos , Receptores Androgénicos/genética , Andrógenos/farmacología , Neoplasias de la Próstata Resistentes a la Castración/genética , Dihidrotestosterona/farmacología , Activación Transcripcional , Ratones SCID , Ratones Endogámicos NOD , Esteroides , Colesterol , Testosterona/farmacología
15.
Clin Sci (Lond) ; 136(1): 81-101, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-34904644

RESUMEN

RATIONALE: The FDA-approved Dimethyl Fumarate (DMF) as an oral drug for Multiple Sclerosis (MS) treatment based on its immunomodulatory activities. However, it also caused severe adverse effects mainly related to the gastrointestinal system. OBJECTIVE: Investigated the potential effects of solid lipid nanoparticles (SLNs) containing DMF, administered by inhalation on the clinical signs, central nervous system (CNS) inflammatory response, and lung function changes in mice with experimental autoimmune encephalomyelitis (EAE). MATERIALS AND METHODS: EAE was induced using MOG35-55 peptide in female C57BL/6J mice and the mice were treated via inhalation with DMF-encapsulated SLN (CTRL/SLN/DMF and EAE/SLN/DMF), empty SLN (CTRL/SLN and EAE/SLN), or saline solution (CTRL/saline and EAE/saline), every 72 h during 21 days. RESULTS: After 21 days post-induction, EAE mice treated with DMF-loaded SLN, when compared with EAE/saline and EAE/SLN, showed decreased clinical score and weight loss, reduction in brain and spinal cord injury and inflammation, also related to the increased influx of Foxp3+ cells into the spinal cord and lung tissues. Moreover, our data revealed that EAE mice showed signs of respiratory disease, marked by increased vascular permeability, leukocyte influx, production of TNF-α and IL-17, perivascular and peribronchial inflammation, with pulmonary mechanical dysfunction associated with loss of respiratory volumes and elasticity, which DMF-encapsulated reverted in SLN nebulization. CONCLUSION: Our study suggests that inhalation of DMF-encapsulated SLN is an effective therapeutic protocol that reduces not only the CNS inflammatory process and disability progression, characteristic of EAE disease, but also protects mice from lung inflammation and pulmonary dysfunction.


Asunto(s)
Dimetilfumarato/administración & dosificación , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Liposomas/administración & dosificación , Nanopartículas/administración & dosificación , Neumonía/tratamiento farmacológico , Administración por Inhalación , Animales , Modelos Animales de Enfermedad , Femenino , Inmunosupresores/administración & dosificación , Ratones Endogámicos C57BL , Esclerosis Múltiple
16.
Cell Mol Neurobiol ; 42(3): 557-564, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33010018

RESUMEN

Glioma is the prevalent aggressive primary brain tumor, with a very poor prognosis. The absence of advanced understanding of the roles played by the cells within the glioma microenvironment limits the development of effective drugs. A recent study indicates that periostin expressed by pericytes is crucial for glioma angiogenesis. Here, we describe succinctly the results and implications of this discovery in what we know about pericytes within the glioma microenvironment. The emerging knowledge from this work will benefit the development of therapies for gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/patología , Glioma/patología , Humanos , Morfogénesis , Neovascularización Patológica/patología , Pericitos/patología , Microambiente Tumoral
17.
FASEB J ; 35(10): e21886, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34473369

RESUMEN

The cardiac circadian clock is responsible for the modulation of different myocardial processes, and its dysregulation has been linked to disease development. How this clock machinery is regulated in the heart remains an open question. Because noradrenaline (NE) can act as a zeitgeber in cardiomyocytes, we tested the hypothesis that adrenergic signaling resets cardiac clock gene expression in vivo. In its anti-phase with Clock and Bmal1, cardiac Per1 abundance increased during the dark phase, concurrent with the rise in heart rate and preceded by an increase in NE levels. Sympathetic denervation altered Bmal1 and Clock amplitude, while Per1 was affected in both amplitude and oscillatory pattern. We next treated mice with a ß-adrenergic receptor (ß-AR) blocker. Strikingly, the ß-AR blockade during the day suppressed the nocturnal increase in Per1 mRNA, without altering Clock or Bmal1. In contrast, activating ß-AR with isoproterenol (ISO) promoted an increase in Per1 expression, demonstrating its responsiveness to adrenergic input. Inhibitors of ERK1/2 and CREB attenuated ISO-induced Per1 expression. Upstream of ERK1/2, PI3Kγ mediated ISO induction of Per1 transcription, while activation of ß2-AR, but not ß1-AR induced increases in ERK1/2 phosphorylation and Per1 expression. Consistent with the ß2-induction of Per1 mRNA, ISO failed to activate ERK1/2 and elevate Per1 in the heart of ß2-AR-/- mice, whereas a ß2-AR antagonist attenuated the nocturnal rise in Per1 expression. Our study established a link between NE/ß2-AR signaling and Per1 oscillation via the PI3Ky-ERK1/2-CREB pathway, providing a new framework for understanding the physiological mechanism involved in resetting cardiac clock genes.


Asunto(s)
Regulación de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Miocardio/metabolismo , Proteínas Circadianas Period/biosíntesis , Receptores Adrenérgicos beta 2/metabolismo , Factores de Transcripción ARNTL/biosíntesis , Factores de Transcripción ARNTL/genética , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Animales , Proteínas CLOCK/biosíntesis , Isoproterenol/farmacología , Masculino , Ratones , Ratones Noqueados , Proteínas Circadianas Period/genética , Receptores Adrenérgicos beta 2/genética
18.
Virol J ; 19(1): 93, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35619142

RESUMEN

BACKGROUND: Phylogenetic studies indicate bats as original hosts of SARS-CoV-2. However, it remains unclear whether other animals, including pets, are crucial in the spread and maintenance of COVID-19 worldwide. METHODS: In this study, we analyzed the first fatal case of a SARS-CoV-2 and FeLV co-infection in an eight-year-old male cat. We carried out a clinical evaluation and several laboratory analyses. RESULTS: As main results, we observed an animal presenting severe acute respiratory syndrome and lesions in several organs, which led to the animal's death. RT-qPCR analysis showed a SARS-CoV-2 as the causative agent. The virus was detected in several organs, indicating a multisystemic infection. The virus was found in a high load in the trachea, suggesting that the animal may have contribute to the transmission of the virus. The whole-genome sequencing revealed an infection by SARS-CoV-2 Gamma VOC (P.1), and any mutations indicating host adaptation were observed. CONCLUSION: Our data show that FeLV-positive cats are susceptible to SARS-CoV-2 infection and raise questions about the potential of immunocompromised FeLV-positive cats to act as a reservoir for SARS-CoV-2 new variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Virus de la Leucemia Felina , Masculino , Filogenia , SARS-CoV-2/genética
19.
Adv Exp Med Biol ; 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35389198

RESUMEN

Stem cells are very promising for the treatment of a plethora of human diseases. Numerous clinical studies have been conducted to assess the safety and efficacy of various stem cell types. Factors that ensure successful therapeutic outcomes in patients are cell-based parameters such as source, viability, and number, as well as frequency and timing of intervention and disease stage. Stem cell administration routes should be appropriately chosen as these can affect homing and engraftment of the cells and hence reduce therapeutic effects, or compromise safety, resulting in serious adverse events. In this chapter, we will describe the use of stem cells in organ repair and regeneration, in particular, the liver and the available routes of cell delivery in the clinic for end-stage liver diseases. Factors affecting homing and engraftment of stem cells for each administration route will be discussed.

20.
Clin Oral Investig ; 26(2): 1561-1567, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34387730

RESUMEN

OBJECTIVES: The presence of SARS-CoV-2 virus in the saliva of patients infected with COVID-19 has been confirmed by several studies. However, the use of saliva for the diagnosis of COVID-19 remains limited, because of the discrepancies in the results, which might be due to using different saliva sampling methods. The purpose of this study was to compare the consistency of SARS-CoV-2 detection using two different saliva sampling methods (oral swab and unstimulated saliva) to that of the standard nasopharyngeal swab. METHODS: Fifty-five subjects were recruited from a pool of COVID-19 inpatient at the Hospital Israelita Albert Einstein (HIAE), Brazil. Nasopharyngeal swab, oral swab, and self-collected unstimulated saliva samples were examined for SARS-CoV-2 using RT-PCR. RESULTS: Self-collected unstimulated saliva demonstrated 87.3% agreement in the detection of SARS-CoV-2 virus as compared with the nasopharyngeal swab, while oral swab displayed 65.9% agreement when compared to nasopharyngeal swab and 73% when compared to self-collected unstimulated saliva. CONCLUSION: Unstimulated self-collected saliva samples have shown a higher agreement with the nasopharyngeal swab samples for SARS-COV-2 detection than that obtained when using oral swab samples. CLINICAL RELEVANCE: This study compares the accuracy of COVID-19 test using different saliva sampling methods to that of nasopharyngeal swab. Given the need for a simple self-applied test that can be performed at home, our findings support the efficacy of self-collected unstimulated saliva samples in the diagnosis of SARS-CoV-2 infection, alleviating the demands for swab supplies, personal protective equipment, and healthcare personnel.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Nasofaringe , Saliva , Manejo de Especímenes
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda