Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Stem Cell Reports ; 18(1): 220-236, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36525964

RESUMEN

Titin-truncating variants (TTNtv) are the single largest genetic cause of dilated cardiomyopathy (DCM). In this study we modeled disease phenotypes of A-band TTNtv-induced DCM in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using genome editing and tissue engineering technologies. Transcriptomic, cellular, and micro-tissue studies revealed that A-band TTNtv hiPSC-CMs exhibit pathogenic proteinopathy, sarcomere defects, aberrant Na+ channel activities, and contractile dysfunction. These phenotypes establish a dual mechanism of poison peptide effect and haploinsufficiency that collectively contribute to DCM pathogenesis. However, TTNtv cellular defects did not interfere with the function of the core contractile machinery, the actin-myosin-troponin-Ca2+ complex, and preserved the therapeutic mechanism of sarcomere modulators. Treatment of TTNtv cardiac micro-tissues with investigational sarcomere modulators augmented contractility and resulted in sustained transcriptomic changes that promote reversal of DCM disease signatures. Together, our findings elucidate the underlying pathogenic mechanisms of A-band TTNtv-induced DCM and demonstrate the validity of sarcomere modulators as potential therapeutics.


Asunto(s)
Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Humanos , Miocitos Cardíacos/patología , Sarcómeros , Células Madre Pluripotentes Inducidas/patología , Conectina/genética , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Contracción Miocárdica
2.
Science ; 368(6496): 1205-1210, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32527825

RESUMEN

Cell migration is driven by local membrane protrusion through directed polymerization of F-actin at the front. However, F-actin next to the plasma membrane also tethers the membrane and thus resists outgoing protrusions. Here, we developed a fluorescent reporter to monitor changes in the density of membrane-proximal F-actin (MPA) during membrane protrusion and cell migration. Unlike the total F-actin concentration, which was high in the front of migrating cells, MPA density was low in the front and high in the back. Back-to-front MPA density gradients were controlled by higher cofilin-mediated turnover of F-actin in the front. Furthermore, nascent membrane protrusions selectively extended outward from areas where MPA density was reduced. Thus, locally low MPA density directs local membrane protrusions and stabilizes cell polarization during cell migration.


Asunto(s)
Actinas/metabolismo , Movimiento Celular , Extensiones de la Superficie Celular , Actinas/química , Actinas/genética , Membrana Celular , Polaridad Celular , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos
3.
Nat Commun ; 11(1): 4818, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968060

RESUMEN

Migrating cells move across diverse assemblies of extracellular matrix (ECM) that can be separated by micron-scale gaps. For membranes to protrude and reattach across a gap, actin filaments, which are relatively weak as single filaments, must polymerize outward from adhesion sites to push membranes towards distant sites of new adhesion. Here, using micropatterned ECMs, we identify T-Plastin, one of the most ancient actin bundling proteins, as an actin stabilizer that promotes membrane protrusions and enables bridging of ECM gaps. We show that T-Plastin widens and lengthens protrusions and is specifically enriched in active protrusions where F-actin is devoid of non-muscle myosin II activity. Together, our study uncovers critical roles of the actin bundler T-Plastin to promote protrusions and migration when adhesion is spatially-gapped.


Asunto(s)
Movimiento Celular/fisiología , Extensiones de la Superficie Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sistemas CRISPR-Cas , Adhesión Celular , Línea Celular , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Técnicas de Inactivación de Genes , Humanos , Cinética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/ultraestructura , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/ultraestructura , Miosinas/metabolismo , Seudópodos/metabolismo , Receptor EphB2
4.
Cell Cycle ; 19(22): 3167-3181, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33131406

RESUMEN

During muscle regeneration, extracellular signal-regulated kinase (ERK) promotes both proliferation and migration. However, the relationship between proliferation and migration is poorly understood in this context. To elucidate this complex relationship on a physiological level, we established an intravital imaging system for measuring ERK activity, migration speed, and cell-cycle phases in mouse muscle satellite cell-derived myogenic cells. We found that in vivo, ERK is maximally activated in myogenic cells two days after injury, and this is then followed by increases in cell number and motility. With limited effects of ERK activity on migration on an acute timescale, we hypothesized that ERK increases migration speed in the later phase by promoting cell-cycle progression. Our cell-cycle analysis further revealed that in myogenic cells, ERK activity is critical for G1/S transition, and cells migrate more rapidly in S/G2 phase 3 days after injury. Finally, migration speed of myogenic cells was suppressed after CDK1/2-but not CDK1-inhibitor treatment, demonstrating a critical role of CDK2 in myogenic cell migration. Overall, our study demonstrates that in myogenic cells, the ERK-CDK2 axis promotes not only G1/S transition but also migration, thus providing a novel mechanism for efficient muscle regeneration.


Asunto(s)
Ciclo Celular/genética , Movimiento Celular/genética , Microscopía Intravital/métodos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Regeneración/genética , Células Satélite del Músculo Esquelético/metabolismo , Animales , Cardiotoxinas/efectos adversos , Línea Celular , Proliferación Celular/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Transgénicos , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/lesiones , Transfección
5.
Nat Cell Biol ; 18(12): 1311-1323, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27842057

RESUMEN

The development and maintenance of tissues requires collective cell movement, during which neighbouring cells coordinate the polarity of their migration machineries. Here, we ask how polarity signals are transmitted from one cell to another across symmetrical cadherin junctions, during collective migration. We demonstrate that collectively migrating endothelial cells have polarized VE-cadherin-rich membrane protrusions, 'cadherin fingers', which leading cells extend from their rear and follower cells engulf at their front, thereby generating opposite membrane curvatures and asymmetric recruitment of curvature-sensing proteins. In follower cells, engulfment of cadherin fingers occurs along with the formation of a lamellipodia-like zone with low actomyosin contractility, and requires VE-cadherin/catenin complexes and Arp2/3-driven actin polymerization. Lateral accumulation of cadherin fingers in follower cells precedes turning, and increased actomyosin contractility can initiate cadherin finger extension as well as engulfment by a neighbouring cell, to promote follower behaviour. We propose that cadherin fingers serve as guidance cues that direct collective cell migration.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Movimiento Celular , Polaridad Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Fagocitosis , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actomiosina/metabolismo , Cateninas/metabolismo , Recuento de Células , Membrana Celular/metabolismo , Células HEK293 , Humanos , Imagenología Tridimensional , Uniones Intercelulares/metabolismo , Mitosis , Modelos Biológicos , Optogenética , Polimerizacion , Seudópodos/metabolismo
6.
Methods Mol Biol ; 1205: 111-29, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25213242

RESUMEN

Microfluidic platforms are ideal for generating dynamic temporal and spatial perturbations in extracellular environments. Single cells and organisms can be trapped and maintained in microfluidic platforms for long periods of time while their responses to stimuli are measured using appropriate fluorescence reporters and time-lapse microscopy. Such platforms have been used to study problems as diverse as C. elegans olfaction (Chronis et al. Nature Methods 4:727-731, 2007), cancer cell migration (Huang et al. Biomicrofluidics 5:13412, 2011), and E. coli chemotaxis (Ahmed et al. Integr Biol 2:604-629, 2010). In this paper we describe how to construct and use a microfluidic chip to study the response of single yeast cells to dynamic perturbations of their fluid environment. The method involves creation of a photoresist master mold followed by subsequent creation of a polydimethylsiloxane (PDMS) microfluidic chip for maintaining live yeast cells in a channel with two inputs for stimulating the cells. We emphasize simplicity and the methods discussed here are accessible to the average biological laboratory. We cover the basic toolbox for making microfluidic lab-on-a-chip devices, and the techniques discussed serve as a starting point for creating sophisticated microfluidic devices capable of implementing more complicated experimental protocols.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Análisis de la Célula Individual/instrumentación , Levaduras/citología , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Dimetilpolisiloxanos/química , Técnicas Analíticas Microfluídicas/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Microtecnología/instrumentación , Microtecnología/métodos , Análisis de la Célula Individual/métodos
7.
Plant Sci ; 181(6): 675-87, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21958710

RESUMEN

Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of biofuels from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidence supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database, and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional characterization in relation to cell wall biosynthesis.


Asunto(s)
Arabidopsis/genética , Pared Celular/metabolismo , Genes de Plantas , Populus/genética , Arabidopsis/metabolismo , Biocombustibles , Biomasa , Vías Biosintéticas/genética , Minería de Datos , Expresión Génica , Genómica , Populus/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda