Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 48(7): 2272-2282, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33462630

RESUMEN

PURPOSE: Tau pathology progression in Alzheimer's disease (AD) is explained through the network degeneration hypothesis and the neuropathological Braak stages; however, the compatibility of these models remains unclear. METHODS: We utilized [18F]AV-1451 tau-PET scans of 39 subjects with AD and 39 sex-matched amyloid-negative healthy controls (HC) in the ADNI (Alzheimer's Disease Neuroimaging Initiative) dataset. The peak cluster of tau-tracer uptake was identified in each Braak stage of neuropathological tau deposition and used to create a seed-based functional connectivity network (FCN) using 198 HC subjects, to identify healthy networks unaffected by neurodegeneration. RESULTS: Voxel-wise tau deposition was both significantly higher inside relative to outside FCNs and correlated significantly and positively with levels of healthy functional connectivity. Within many isolated Braak stages and regions, the correlation between tau and intrinsic functional connectivity was significantly stronger than it was across the whole brain. In this way, each peak cluster of tau was related to multiple Braak stages traditionally associated with both earlier and later stages of disease. CONCLUSION: We show specificity of healthy FCN topography for AD-pathological tau as well as positive voxel-by-voxel correlations between pathological tau and healthy functional connectivity. We propose a model of "up- and downstream" functional tau progression, suggesting that tau pathology evolves along functional connectivity networks not only "downstream" (i.e., along the expected sequence of the established Braak stages) but also in part "upstream" or "retrograde" (i.e., against the expected sequence of the established Braak stages), with pathology in earlier Braak stages intensified by its functional relationship to later disease stages.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Humanos , Neuroimagen , Tomografía de Emisión de Positrones , Proteínas tau/metabolismo
2.
Eur J Nucl Med Mol Imaging ; 48(7): 2110-2120, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33590274

RESUMEN

PURPOSE: In 2017, the Geneva Alzheimer's disease (AD) strategic biomarker roadmap initiative proposed a framework of the systematic validation AD biomarkers to harmonize and accelerate their development and implementation in clinical practice. Here, we use this framework to examine the translatability of the second-generation tau PET tracers into the clinical context. METHODS: All available literature was systematically searched based on a set of search terms that related independently to analytic validity (phases 1-2), clinical validity (phase 3-4), and clinical utility (phase 5). The progress on each of the phases was determined based on scientific criteria applied for each phase and coded as fully, partially, preliminary achieved or not achieved at all. RESULTS: The validation of the second-generation tau PET tracers has successfully passed the analytical phase 1 of the strategic biomarker roadmap. Assay definition studies showed evidence on the superiority over first-generation tau PET tracers in terms of off-target binding. Studies have partially achieved the primary aim of the analytical validity stage (phase 2), and preliminary evidence has been provided for the assessment of covariates on PET signal retention. Studies investigating of the clinical validity in phases 3, 4, and 5 are still underway. CONCLUSION: The current literature provides overall preliminary evidence on the establishment of the second-generation tau PET tracers into the clinical context, thereby successfully addressing some methodological issues from the tau PET tracer of the first generation. Nevertheless, bigger cohort studies, longitudinal follow-up, and examination of diverse disease population are still needed to gauge their clinical validity.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Biomarcadores , Estudios de Cohortes , Humanos , Tomografía de Emisión de Positrones , Proteínas tau
3.
Eur J Nucl Med Mol Imaging ; 48(7): 2070-2085, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33688996

RESUMEN

BACKGROUND: The 2017 Alzheimer's disease (AD) Strategic Biomarker Roadmap (SBR) structured the validation of AD diagnostic biomarkers into 5 phases, systematically assessing analytical validity (Phases 1-2), clinical validity (Phases 3-4), and clinical utility (Phase 5) through primary and secondary Aims. This framework allows to map knowledge gaps and research priorities, accelerating the route towards clinical implementation. Within an initiative aimed to assess the development of biomarkers of tau pathology, we revised this methodology consistently with progress in AD research. METHODS: We critically appraised the adequacy of the 2017 Biomarker Roadmap within current diagnostic frameworks, discussed updates at a workshop convening the Alzheimer's Association and 8 leading AD biomarker research groups, and detailed the methods to allow consistent assessment of aims achievement for tau and other AD diagnostic biomarkers. RESULTS: The 2020 update applies to all AD diagnostic biomarkers. In Phases 2-3, we admitted a greater variety of study designs (e.g., cross-sectional in addition to longitudinal) and reference standards (e.g., biomarker confirmation in addition to clinical progression) based on construct (in addition to criterion) validity. We structured a systematic data extraction to enable transparent and formal evidence assessment procedures. Finally, we have clarified issues that need to be addressed to generate data eligible to evidence-to-decision procedures. DISCUSSION: This revision allows for more versatile and precise assessment of existing evidence, keeps up with theoretical developments, and helps clinical researchers in producing evidence suitable for evidence-to-decision procedures. Compliance with this methodology is essential to implement AD biomarkers efficiently in clinical research and diagnostics.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Biomarcadores , Estudios Transversales , Progresión de la Enfermedad , Humanos , Estándares de Referencia , Proteínas tau
5.
Eur J Nucl Med Mol Imaging ; 46(13): 2819-2830, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31292699

RESUMEN

Our understanding on human neurodegenerative disease was previously limited to clinical data and inferences about the underlying pathology based on histopathological examination. Animal models and in vitro experiments have provided evidence for a cell-autonomous and a non-cell-autonomous mechanism for the accumulation of neuropathology. Combining modern neuroimaging tools to identify distinct neural networks (connectomics) with target-specific positron emission tomography (PET) tracers is an emerging and vibrant field of research with the potential to examine the contributions of cell-autonomous and non-cell-autonomous mechanisms to the spread of pathology. The evidence provided here suggests that both cell-autonomous and non-cell-autonomous processes relate to the observed in vivo characteristics of protein pathology and neurodegeneration across the disease spectrum. We propose a synergistic model of cell-autonomous and non-cell-autonomous accounts that integrates the most critical factors (i.e., protein strain, susceptible cell feature and connectome) contributing to the development of neuronal dysfunction and in turn produces the observed clinical phenotypes. We believe that a timely and longitudinal pursuit of such research programs will greatly advance our understanding of the complex mechanisms driving human neurodegenerative diseases.


Asunto(s)
Conectoma/métodos , Imagen Molecular/métodos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Animales , Humanos
6.
Eur J Nucl Med Mol Imaging ; 46(9): 1787-1795, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31183635

RESUMEN

PURPOSE: Using PET imaging in a group of patients with Alzheimer's disease (AD), we investigated whether level of education, a proxy for resilience, mitigates the harmful impact of tau pathology on neuronal function. METHODS: We included 38 patients with mild-to-moderate AD (mean age 67 ± 7 years, mean MMSE score 24 ± 4, mean years of education 14 ± 4; 20 men, 18 women) in whom a [18F]AV-1451 scan (a measure of tau pathology) and an [18F]FDG scan (a measure of neuronal function) were available. The preprocessed PET scans were z-transformed using templates for [18F]AV-1451 and [18F]FDG from healthy controls, and subsequently thresholded at a z-score of ≥3.0, representing an one-tailed p value of 0.001. Next, three volumes were computed in each patient: the tau-specific volume (tau pathology without neuronal dysfunction), the FDG-specific volume (neuronal dysfunction without tau pathology), and the overlap volume (tau pathology and neuronal dysfunction). Mean z-scores and volumes were extracted and used as dependent variables in regression analysis with years of education as predictor, and age and MMSE score as covariates. RESULTS: Years of education were positively associated with tau-specific volume (ß = 0.362, p = 0.022), suggesting a lower impact of tau pathology on neuronal function in patients with higher levels of education. Concomitantly, level of education was positively related to tau burden in the overlap volume (ß = 0.303, p = 0.036) implying that with higher levels of education more tau pathology is necessary to induce neuronal dysfunction. CONCLUSION: In patients with higher levels of education, tau pathology is less paralleled by regional and remote neuronal dysfunction. The data suggest that early life-time factors such as level of education support resilience mechanisms, which ameliorate AD-related effects later in life.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Escolaridad , Neuronas/patología , Proteínas tau/metabolismo , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/fisiopatología , Femenino , Humanos , Masculino , Tomografía de Emisión de Positrones
7.
Brain ; 141(2): 568-581, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29315361

RESUMEN

See Whitwell (doi:10.1093/brain/awy001) for a scientific commentary on this article.A stereotypical anatomical propagation of tau pathology has been described in Alzheimer's disease. According to recent concepts (network degeneration hypothesis), this propagation is thought to be indicative of misfolded tau proteins possibly spreading along functional networks. If true, tau pathology accumulation should correlate in functionally connected brain regions. Therefore, we examined whether independent components could be identified in the distribution pattern of in vivo tau pathology and whether these components correspond with specific functional connectivity networks. Twenty-two 18F-AV-1451 PET scans of patients with amnestic Alzheimer's disease (mean age = 66.00 ± 7.22 years, 14 males/eight females) were spatially normalized, intensity standardized to the cerebellum, and z-transformed using the mean and deviation image of a healthy control sample to assess Alzheimer's disease-related tau pathology. First, to detect distinct tau pathology networks, the deviation maps were subjected to an independent component analysis. Second, to investigate if regions of high tau burden are associated with functional connectivity networks, we extracted the region with the maximum z-value in each of the generated tau pathology networks and used them as seeds in a subsequent resting-state functional MRI analysis, conducted in a group of healthy adults (n = 26) who were part of the 1000 Functional Connectomes Project. Third, to examine if tau pathology co-localizes with functional connectivity networks, we quantified the spatial overlap between the seed-based networks and the corresponding tau pathology network by calculating the Dice similarity coefficient. Additionally, we assessed if the tau-dependent seed-based networks correspond with known functional resting-state networks. Finally, we examined the relevance of the identified components in regard to the neuropathological Braak stages. We identified 10 independently coherent tau pathology networks with the majority showing a symmetrical bi-hemispheric expansion and coinciding with highly functionally connected brain regions such as the precuneus and cingulate cortex. A fair-to-moderate overlap was observed between the tau pathology networks and corresponding seed-based networks (Dice range: 0.13-0.57), which in turn resembled known resting-state networks, particularly the default mode network (Dice range: 0.42-0.56). Moreover, greater tau burden in the tau pathology networks was associated with more advanced Braak stages. Using the data-driven approach of an independent component analysis, we observed a set of independently coherent tau pathology networks in Alzheimer's disease, which were associated with disease progression and coincided with functional networks previously reported to be impaired in Alzheimer's disease. Together, our results provide novel information regarding the impact of tau pathology networks on the mechanistic pathway of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Vías Nerviosas/metabolismo , Proteínas tau/metabolismo , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Mapeo Encefálico , Carbolinas/farmacocinética , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Oxígeno/sangre , Tomografía de Emisión de Positrones , Análisis de Componente Principal , Descanso , Proteínas tau/efectos de los fármacos
8.
Methods ; 130: 114-123, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28790016

RESUMEN

Pathological cerebral aggregations of proteins are suggested to play a crucial role in the development of neurodegenerative disorders. For example, aggregation of the protein ß-amyloid in form of extracellular amyloid-plaques as well as intraneuronal depositions of the protein tau in form of neurofibrillary tangles represent hallmarks of Alzheimer's disease (AD). Recently, novel tracers for in vivo molecular imaging of tau-aggregates in the brain have been introduced, complementing existing tracers for imaging amyloid-plaques. Available data on these novel tracers indicate that the subject of Tau-PET may be of considerable complexity. On the one hand this refers to the various forms of appearance of tau-pathology in different types of neurodegenerative disorders. On the other hand, a number of hurdles regarding validation of these tracers still need to be overcome with regard to comparability and standardization of the different tracers, observed off-target/non-specific binding and quantitative interpretation of the signal. These issues will have to be clarified before systematic clinical application of this exciting new methodological approach may become possible. Potential applications refer to early detection of neurodegeneration, differential diagnosis between tauopathies and non-tauopathies and specific patient selection and follow-up in therapy trials.


Asunto(s)
Fluorodesoxiglucosa F18/metabolismo , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Fluorodesoxiglucosa F18/administración & dosificación , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/tendencias , Unión Proteica/fisiología , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo
9.
Eur J Nucl Med Mol Imaging ; 44(13): 2249-2256, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29026951

RESUMEN

PURPOSE: Cerebral glucose metabolism measured with [18F]-FDG PET is a well established marker of neuronal dysfunction in neurodegeneration. The tau-protein tracer [18F]-AV-1451 PET is currently under evaluation and shows promising results. Here, we assess the feasibility of early perfusion imaging with AV-1451 as a substite for FDG PET in assessing neuronal injury. METHODS: Twenty patients with suspected neurodegeneration underwent FDG and early phase AV-1451 PET imaging. Ten one-minute timeframes were acquired after application of 200 MBq AV-1451. FDG images were acquired on a different date according to clinical protocol. Early AV-1451 timeframes were coregistered to individual FDG-scans and spatially normalized. Voxel-wise intermodal correlations were calculated on within-subject level for every possible time window. The window with highest pooled correlation was considered optimal. Z-transformed deviation maps (ZMs) were created from both FDG and early AV-1451 images, comparing against FDG images of healthy controls. RESULTS: Regional patterns and extent of perfusion deficits were highly comparable to metabolic deficits. Best results were observed in a time window from 60 to 360 s (r = 0.86). Correlation strength ranged from r = 0.96 (subcortical gray matter) to 0.83 (frontal lobe) in regional analysis. ZMs of early AV-1451 and FDG images were highly similar. CONCLUSION: Perfusion imaging with AV-1451 is a valid biomarker for assessment of neuronal dysfunction in neurodegenerative diseases. Radiation exposure and complexity of the diagnostic workup could be reduced significantly by routine acquisition of early AV-1451 images, sparing additional FDG PET.


Asunto(s)
Carbolinas , Fluorodesoxiglucosa F18 , Neuronas/metabolismo , Imagen de Perfusión , Tomografía de Emisión de Positrones , Humanos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
11.
Neuroimage ; 104: 21-34, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25284304

RESUMEN

We examined functional activation across the adult lifespan in 316 healthy adults aged 20-89years on a judgment task that, across conditions, drew upon both semantic knowledge and ability to modulate neural function in response to cognitive challenge. Activation in core regions of the canonical semantic network (e.g., left IFG) were largely age-invariant, consistent with cognitive aging studies that show verbal knowledge is preserved across the lifespan. However, we observed a steady linear increase in activation with age in regions outside the core network, possibly as compensation to maintain function. Under conditions of increased task demands, we observed a stepwise reduction across the lifespan of modulation of activation to increasing task demands in cognitive control regions (frontal, parietal, anterior cingulate), paralleling the neural equivalent of "processing resources" described by cognitive aging theories. Middle-age was characterized by decreased modulation to task-demand in subcortical regions (caudate, nucleus accumbens, thalamus), and very old individuals showed reduced modulation to task difficulty in midbrain/brainstem regions (ventral tegmental, substantia nigra). These novel findings suggest that aging of activation to demand follows a gradient along the dopaminergic/nigrostriatal system, with earliest manifestation in fronto-parietal regions, followed by deficits in subcortical nuclei in middle-age and then to midbrain/brainstem dopaminergic regions in the very old.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Mapeo Encefálico , Cuerpo Estriado/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Juicio , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Sustancia Negra/fisiología , Adulto Joven
12.
Psychosom Med ; 77(6): 697-709, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26107577

RESUMEN

OBJECTIVES: This review focuses on the relationship between obesity and aging and how these interact to affect cognitive function. The topics covered are guided by the Scaffolding Theory of Aging and Cognition (STAC [Park and Reuter-Lorenz. Annu Rev Psychol 2009;60:173-96]-a conceptual model designed to relate brain structure and function to one's level of cognitive ability. METHODS: The initial literature search was focused on normal aging and was guided by the key words, "aging, cognition, and obesity" in PubMed. In a second search, we added key words related to neuropathology including words "Alzheimer's disease," "vascular dementia," and "mild cognitive impairment." RESULTS: The data suggest that being overweight or obese in midlife may be more detrimental to subsequent age-related cognitive decline than being overweight or obese at later stages of the life span. These effects are likely mediated by the accelerated effects obesity has on the integrity of neural structures, including both gray and white matter. Further epidemiological studies have provided evidence that obesity in midlife is linked to an increased risk for Alzheimer's disease and vascular dementia, most likely via an increased accumulation of Alzheimer's disease pathology. CONCLUSIONS: Although it is clear that obesity negatively affects cognition, more work is needed to better understand how aging plays a role and how brain structure and brain function might mediate the relationship of obesity and age on cognition. Guided by the STAC and the STAC-R models, we provide a roadmap for future investigations of the role of obesity on cognition across the life span.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiopatología , Trastornos del Conocimiento/etiología , Cognición/fisiología , Obesidad/complicaciones , Envejecimiento/patología , Encéfalo/patología , Humanos
13.
Psychol Sci ; 25(1): 103-12, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24214244

RESUMEN

In the research reported here, we tested the hypothesis that sustained engagement in learning new skills that activated working memory, episodic memory, and reasoning over a period of 3 months would enhance cognitive function in older adults. In three conditions with high cognitive demands, participants learned to quilt, learned digital photography, or engaged in both activities for an average of 16.51 hr a week for 3 months. Results at posttest indicated that episodic memory was enhanced in these productive-engagement conditions relative to receptive-engagement conditions, in which participants either engaged in nonintellectual activities with a social group or performed low-demand cognitive tasks with no social contact. The findings suggest that sustained engagement in cognitively demanding, novel activities enhances memory function in older adulthood, but, somewhat surprisingly, we found limited cognitive benefits of sustained engagement in social activities.


Asunto(s)
Envejecimiento/fisiología , Cognición/fisiología , Aprendizaje/fisiología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Estilo de Vida , Masculino , Memoria Episódica , Persona de Mediana Edad , Resultado del Tratamiento
14.
eNeuro ; 11(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38164539

RESUMEN

Stereotypical isocortical tau protein pathology along the Braak stages has been described as an instigator of neurodegeneration in Alzheimer's disease (AD). Less is known about tau pathology in motor regions, although higher-order motor deficits such as praxis dysfunction are part of the clinical description. Here, we examined how tau pathology in cytoarchitectonically mapped regions of the primary and higher-order motor network in comparison to primary visual and sensory regions varies across the clinical spectrum of AD. We analyzed tau PET scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort in patients with mild cognitive impairment (MCI; N = 84) and dementia of the Alzheimer's disease type (DAD; N = 25). Additionally, an amyloid-negative sample of healthy older individuals (HC; N = 26) were included. Standard uptake ratio values (SUVRs) were extracted in native space from the left and the right hemispheres. A repeated measurement analysis of variance was conducted to assess the effect of diagnostic disease category on tau pathology in the individual motor regions, controlling for age. We observed that tau pathology varies as a function of diagnostic category in predominantly higher motor regions (i.e., supplementary motor area, superior parietal lobe, angular gyrus, and dorsal premotor cortex) compared to primary visual, sensory and motor regions. Indeed, tau in higher-order motor regions was significantly associated with decline in cognitive function. Together, these results expand our knowledge on the in vivo pattern of tau pathology in AD and suggest that higher motor regions are not spared from tau aggregation in the course of disease, potentially contributing to the symptomatic appearance of the disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Neuroimagen , Tomografía de Emisión de Positrones/métodos , Disfunción Cognitiva/metabolismo , Péptidos beta-Amiloides/metabolismo
15.
NPJ Parkinsons Dis ; 10(1): 94, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697984

RESUMEN

Resilience in neuroscience generally refers to an individual's capacity to counteract the adverse effects of a neuropathological condition. While resilience mechanisms in Alzheimer's disease are well-investigated, knowledge regarding its quantification, neurobiological underpinnings, network adaptations, and long-term effects in Parkinson's disease is limited. Our study involved 151 Parkinson's patients from the Parkinson's Progression Marker Initiative Database with available Magnetic Resonance Imaging, Dopamine Transporter Single-Photon Emission Computed Tomography scans, and clinical information. We used an improved prediction model linking neuropathology to symptom severity to estimate individual resilience levels. Higher resilience levels were associated with a more active lifestyle, increased grey matter volume in motor-associated regions, a distinct structural connectivity network and maintenance of relative motor functioning for up to a decade. Overall, the results indicate that relative maintenance of motor function in Parkinson's patients may be associated with greater neuronal substrate, allowing higher tolerance against neurodegenerative processes through dynamic network restructuring.

16.
medRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645131

RESUMEN

Objectives: Apraxia is a core feature of Alzheimer's disease, but the pathomechanism of this characteristic symptom is not well understood. Here, we systematically investigated apraxia profiles in a well-defined group of patients with Alzheimer's disease (AD; N=32) who additionally underwent PET imaging with the second-generation tau PET tracer [18F]PI-2620. We hypothesized that specific patterns of tau pathology might be related to apraxic deficits. Methods: Patients (N=32) with a biomarker-confirmed diagnosis of Alzheimer's disease were recruited in addition to a sample cognitively unimpaired controls (CU 1 ; N=41). Both groups underwent in-depth neuropsychological assessment of apraxia (Dementia Apraxia Screening Test; DATE and the Cologne Apraxia Screening; KAS). In addition, static PET imaging with [18F]PI-2620 was performed to assess tau pathology in the AD patients. To specifically investigate the association of apraxia with regional tau-pathology, we compared the PET-data from this group with an independent sample of amyloid-negative cognitively intact participants (CU 2; N=54) by generation of z-score-deviation maps as well as voxel- based multiple regression analyses. Results: We identified significant clusters of tau-aggregation in praxis-related regions (e.g., supramarginal gyrus, angular gyrus, temporal, parietal and occipital regions) that were associated with apraxia. These regions were similar between the two apraxia assessments. No correlations between tau-tracer uptake in primary motor cortical or subcortical brain regions and apraxia were observed. Conclusions: These results suggest that tau deposition in specific cortical brain regions may induce local neuronal dysfunction leading to a dose-dependent functional decline in praxis performance.

17.
J Nucl Med ; 65(6): 952-955, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38575191

RESUMEN

We used a new data-driven methodology to identify a set of reference regions that enhanced the quantification of the SUV ratio of the second-generation tau tracer 2-(2-([18F]fluoro)pyridin-4-yl)-9H-pyrrolo[2,3-b:4,5-c']dipyridine ([18F]PI-2620) in a group of patients clinically diagnosed with 4-repeat tauopathy, specifically progressive supranuclear palsy or cortical basal syndrome. The study found that SUV ratios calculated using the identified reference regions (i.e., fusiform gyrus and crus-cerebellum) were significantly associated with symptom severity and disease duration. This establishes, for the first time to our knowledge, the suitability of [18F]PI-2620 for tracking disease progression in this 4-repeat disease population. This is an important step toward increased clinical utility, such as patient stratification and monitoring in disease-modifying treatment trials. Additionally, the applied methodology successfully optimized reference regions for automated detection of brain imaging tracers. This approach may also hold value for other brain imaging tracers.


Asunto(s)
Fenotipo , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Piridinas , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo , Radiofármacos/farmacocinética
18.
Neurology ; 102(6): e208053, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38377442

RESUMEN

OBJECTIVES: Higher-educated patients with Alzheimer disease (AD) can harbor greater neuropathologic burden than those with less education despite similar symptom severity. In this study, we assessed whether this observation is also present in potential preclinical AD stages, namely in individuals with subjective cognitive decline and clinical features increasing AD likelihood (SCD+). METHODS: Amyloid-PET information ([18F]Flutemetamol or [18F]Florbetaben) of individuals with SCD+, mild cognitive impairment (MCI), and AD were retrieved from the AMYPAD-DPMS cohort, a multicenter randomized controlled study. Group classification was based on the recommendations by the SCD-I and NIA-AA working groups. Amyloid PET images were acquired within 8 months after initial screening and processed with AMYPYPE. Amyloid load was based on global Centiloid (CL) values. Educational level was indexed by formal schooling and subsequent higher education in years. Using linear regression analysis, the main effect of education on CL values was tested across the entire cohort, followed by the assessment of an education-by-diagnostic-group interaction (covariates: age, sex, and recruiting memory clinic). To account for influences of non-AD pathology and comorbidities concerning the tested amyloid-education association, we compared white matter hyperintensity (WMH) severity, cardiovascular events, depression, and anxiety history between lower-educated and higher-educated groups within each diagnostic category using the Fisher exact test or χ2 test. Education groups were defined using a median split on education (Md = 13 years) in a subsample of the initial cohort, for whom this information was available. RESULTS: Across the cohort of 212 individuals with SCD+ (M(Age) = 69.17 years, F 42.45%), 258 individuals with MCI (M(Age) = 72.93, F 43.80%), and 195 individuals with dementia (M(Age) = 74.07, F 48.72%), no main effect of education (ß = 0.52, 95% CI -0.30 to 1.58), but a significant education-by-group interaction on CL values, was found (p = 0.024) using linear regression modeling. This interaction was driven by a negative association of education and CL values in the SCD+ group (ß = -0.11, 95% CI -4.85 to -0.21) and a positive association in the MCI group (ß = 0.15, 95% CI 0.79-5.22). No education-dependent differences in terms of WMH severity and comorbidities were found in the subsample (100 cases with SCD+, 97 cases with MCI, 72 cases with dementia). DISCUSSION: Education may represent a factor oppositely modulating subjective awareness in preclinical stages and objective severity of ongoing neuropathologic processes in clinical stages.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/epidemiología , Amiloide , Péptidos beta-Amiloides , Proteínas Amiloidogénicas , Biomarcadores , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/epidemiología , Escolaridad , Estudios Longitudinales , Tomografía de Emisión de Positrones , Estudios Multicéntricos como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
19.
J Neurosci ; 32(6): 2154-8, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22323727

RESUMEN

Previous studies have found that cortical responses to different stimuli become less distinctive as people get older. This age-related dedifferentiation may reflect the broadening of the tuning curves of category-selective neurons (broadening hypothesis) or it may be due to decreased activation of category-selective neurons (attenuation hypothesis). In this study, we evaluated these hypotheses in the context of the face-selective neural network. Over 300 participants, ranging in age from 20 to 89 years, viewed images of faces, houses, and control stimuli in a functional magnetic resonance imaging session. Regions within the core face network and extended face network were identified in individual subjects. Activation in many of these regions became significantly less face-selective with age, confirming previous reports of age-related dedifferentiation. Consistent with the broadening hypothesis, this dedifferentiation in the fusiform face area (FFA) was driven by increased activation to houses. In contrast, dedifferentiation in the extended face network was driven by decreased activation to faces, consistent with the attenuation hypothesis. These results suggest that age-related dedifferentiation reflects distinct processes in different brain areas. More specifically, dedifferentiation in FFA activity may be due to broadening of the tuning curves for face-selective neurons, while dedifferentiation in the extended face network reflects reduced face- or emotion-selective activity.


Asunto(s)
Envejecimiento/fisiología , Cara , Longevidad/fisiología , Red Nerviosa/fisiología , Reconocimiento Visual de Modelos/fisiología , Estimulación Luminosa/métodos , Adulto , Anciano , Anciano de 80 o más Años , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
20.
J Nucl Med ; 64(1): 20-29, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599475

RESUMEN

Imaging of mild traumatic brain injury (TBI) using conventional techniques such as CT or MRI often results in no specific imaging correlation that would explain cognitive and clinical symptoms. Molecular imaging of mild TBI suggests that secondary events after injury can be detected using PET. However, no single specific pattern emerges that can aid in diagnosing the injury or determining the prognosis of the long-term behavioral profiles, indicating the heterogeneous and diffuse nature of TBI. Chronic traumatic encephalopathy, a primary tauopathy, has been shown to be strongly associated with repetitive TBI. In vivo data on the available tau PET tracers, however, have produced mixed results and overall low retention profiles in athletes with a history of repetitive mild TBI. Here, we emphasize that the lack of a mechanistic understanding of chronic TBI has posed a challenge when interpreting the results of molecular imaging biomarkers. We advocate for better target identification, improved analysis techniques such as machine learning or artificial intelligence, and novel tracer development.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesión Encefálica Crónica , Tauopatías , Humanos , Encéfalo/diagnóstico por imagen , Inteligencia Artificial , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/complicaciones , Lesión Encefálica Crónica/complicaciones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda