Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proteomics ; 23(5): e2200237, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36480152

RESUMEN

The innate immune protection provided by cationic antimicrobial peptides (CAMPs) has been shown to extend to antiviral activity, with putative mechanisms of action including direct interaction with host cells or pathogen membranes. The lack of therapeutics available for the treatment of viruses such as Venezuelan equine encephalitis virus (VEEV) underscores the urgency of novel strategies for antiviral discovery. American alligator plasma has been shown to exhibit strong in vitro antibacterial activity, and functionalized hydrogel particles have been successfully employed for the identification of specific CAMPs from alligator plasma. Here, a novel bait strategy in which particles were encapsulated in membranes from either healthy or VEEV-infected cells was implemented to identify peptides preferentially targeting infected cells for subsequent evaluation of antiviral activity. Statistical analysis of peptide identification results was used to select five candidate peptides for testing, of which one exhibited a dose-dependent inhibition of VEEV and also significantly inhibited infectious titers. Results suggest our bioprospecting strategy provides a versatile platform that may be adapted for antiviral peptide identification from complex biological samples.


Asunto(s)
Caimanes y Cocodrilos , Virus de la Encefalitis Equina Venezolana , Encefalomielitis Equina Venezolana , Animales , Caballos , Virus de la Encefalitis Equina Venezolana/fisiología , Antivirales/farmacología , Antivirales/uso terapéutico , Encefalomielitis Equina Venezolana/tratamiento farmacológico , Encefalomielitis Equina Venezolana/prevención & control , Bioprospección , Replicación Viral , Péptidos
2.
Appl Environ Microbiol ; 88(8): e0181821, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35348389

RESUMEN

Mucosal defenses are crucial in animals for protection against pathogens and predators. Host defense peptides (antimicrobial peptides, AMPs) as well as skin-associated microbes are key components of mucosal immunity, particularly in amphibians. We integrate microbiology, molecular biology, network-thinking, and proteomics to understand how host and microbially derived products on amphibian skin (referred to as the mucosome) serve as pathogen defenses. We studied defense mechanisms against chytrid pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), in four salamander species with different Batrachochytrium susceptibilities. Bd infection was quantified using qPCR, mucosome function (i.e., ability to kill Bd or Bsal zoospores in vitro), skin bacterial communities using 16S rRNA gene amplicon sequencing, and the role of Bd-inhibitory bacteria in microbial networks across all species. We explored the presence of candidate-AMPs in eastern newts and red-backed salamanders. Eastern newts had the highest Bd prevalence and mucosome function, while red-back salamanders had the lowest Bd prevalence and mucosome function, and two-lined salamanders and seal salamanders were intermediates. Salamanders with highest Bd infection intensity showed greater mucosome function. Bd infection prevalence significantly decreased as putative Bd-inhibitory bacterial richness and relative abundance increased on hosts. In co-occurrence networks, some putative Bd-inhibitory bacteria were found as hub-taxa, with red-backs having the highest proportion of protective hubs and positive associations related to putative Bd-inhibitory hub bacteria. We found more AMP candidates on salamanders with lower Bd susceptibility. These findings suggest that salamanders possess distinct innate mechanisms that affect chytrid fungi. IMPORTANCE How host mucosal defenses interact, and influence disease outcome is critical in understanding host defenses against pathogens. A more detailed understanding is needed of the interactions between the host and the functioning of its mucosal defenses in pathogen defense. This study investigates the variability of chytrid susceptibility in salamanders and the innate defenses each species possesses to mediate pathogens, thus advancing the knowledge toward a deeper understanding of the microbial ecology of skin-associated bacteria and contributing to the development of bioaugmentation strategies to mediate pathogen infection and disease. This study improves the understanding of complex immune defense mechanisms in salamanders and highlights the potential role of the mucosome to reduce the probability of Bd disease development and that putative protective bacteria may reduce likelihood of Bd infecting skin.


Asunto(s)
Quitridiomicetos , Micosis , Animales , Bacterias/genética , Quitridiomicetos/genética , Micosis/microbiología , Micosis/veterinaria , ARN Ribosómico 16S/genética , Urodelos/microbiología
3.
BMC Genomics ; 20(1): 684, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31470795

RESUMEN

BACKGROUND: We report the sequencing, assembly and analysis of the genome of the Komodo dragon (Varanus komodoensis), the largest extant lizard, with a focus on antimicrobial host-defense peptides. The Komodo dragon diet includes carrion, and a complex milieu of bacteria, including potentially pathogenic strains, has been detected in the saliva of wild dragons. They appear to be unaffected, suggesting that dragons have robust defenses against infection. While little information is available regarding the molecular biology of reptile immunity, it is believed that innate immunity, which employs antimicrobial host-defense peptides including defensins and cathelicidins, plays a more prominent role in reptile immunity than it does in mammals. . RESULTS: High molecular weight genomic DNA was extracted from Komodo dragon blood cells. Subsequent sequencing and assembly of the genome from the collected DNA yielded a genome size of 1.6 Gb with 45x coverage, and the identification of 17,213 predicted genes. Through further analyses of the genome, we identified genes and gene-clusters corresponding to antimicrobial host-defense peptide genes. Multiple ß-defensin-related gene clusters were identified, as well as a cluster of potential Komodo dragon ovodefensin genes located in close proximity to a cluster of Komodo dragon ß-defensin genes. In addition to these defensins, multiple cathelicidin-like genes were also identified in the genome. Overall, 66 ß-defensin genes, six ovodefensin genes and three cathelicidin genes were identified in the Komodo dragon genome. CONCLUSIONS: Genes with important roles in host-defense and innate immunity were identified in this newly sequenced Komodo dragon genome, suggesting that these organisms have a robust innate immune system. Specifically, multiple Komodo antimicrobial peptide genes were identified. Importantly, many of the antimicrobial peptide genes were found in gene clusters. We found that these innate immunity genes are conserved among reptiles, and the organization is similar to that seen in other avian and reptilian species. Having the genome of this important squamate will allow researchers to learn more about reptilian gene families and will be a valuable resource for researchers studying the evolution and biology of the endangered Komodo dragon.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Inmunidad Innata/genética , Lagartos/genética , beta-Defensinas/genética , Animales , Péptidos Catiónicos Antimicrobianos/sangre , Péptidos Catiónicos Antimicrobianos/química , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Lagartos/sangre , Lagartos/inmunología , Familia de Multigenes , beta-Defensinas/sangre , beta-Defensinas/química , Catelicidinas
4.
J Immunol ; 198(7): 2957-2966, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28242650

RESUMEN

The purple sea urchin, Strongylocentrotus purpuratus, expresses a diverse immune response protein family called Sp185/333. A recombinant Sp185/333 protein, previously called rSp0032, shows multitasking antipathogen binding ability, suggesting that the protein family mediates a flexible and effective immune response to multiple foreign cells. Bioinformatic analysis predicts that rSp0032 is intrinsically disordered, and its multiple binding characteristic suggests structural flexibility to adopt different conformations depending on the characteristics of the target. To address the flexibility and structural shifting hypothesis, circular dichroism analysis of rSp0032 suggests that it transforms from disordered (random coil) to α helical structure. This structural transformation may be the basis for the strong affinity between rSp0032 and several pathogen-associated molecular patterns. The N-terminal Gly-rich fragment of rSp0032 and the C-terminal His-rich fragment show unique transformations by either intensifying the α helical structure or changing from α helical to ß strand depending on the solvents and molecules added to the buffer. Based on these results, we propose a name change from rSp0032 to rSpTransformer-E1 to represent its flexible structural conformations and its E1 element pattern. Given that rSpTransformer-E1 shifts its conformation in the presence of solvents and binding targets and that all Sp185/333 proteins are predicted to be disordered, many or all of these proteins may undergo structural transformation to enable multitasking binding activity toward a wide range of targets. Consequently, we also propose an overarching name change for the entire family from Sp185/333 proteins to SpTransformer proteins.


Asunto(s)
Inmunidad Innata/inmunología , Strongylocentrotus purpuratus/inmunología , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Biología Computacional , Variación Genética , Fragmentos de Péptidos/inmunología , Proteínas/inmunología
5.
J Proteome Res ; 16(4): 1470-1482, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28164707

RESUMEN

Komodo dragons are the largest living lizards and are the apex predators in their environs. They endure numerous strains of pathogenic bacteria in their saliva and recover from wounds inflicted by other dragons, reflecting the inherent robustness of their innate immune defense. We have employed a custom bioprospecting approach combining partial de novo peptide sequencing with transcriptome assembly to identify cationic antimicrobial peptides from Komodo dragon plasma. Through these analyses, we identified 48 novel potential cationic antimicrobial peptides. All but one of the identified peptides were derived from histone proteins. The antimicrobial effectiveness of eight of these peptides was evaluated against Pseudomonas aeruginosa (ATCC 9027) and Staphylococcus aureus (ATCC 25923), with seven peptides exhibiting antimicrobial activity against both microbes and one only showing significant potency against P. aeruginosa. This study demonstrates the power and promise of our bioprospecting approach to cationic antimicrobial peptide discovery, and it reveals the presence of a plethora of novel histone-derived antimicrobial peptides in the plasma of the Komodo dragon. These findings may have broader implications regarding the role that intact histones and histone-derived peptides play in defending the host from infection. Data are available via ProteomeXChange with identifier PXD005043.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Lagartos/sangre , Transcriptoma/genética , Animales , Péptidos Catiónicos Antimicrobianos/sangre , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Humanos , Espectrometría de Masas , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Saliva/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad
6.
Biochim Biophys Acta ; 1848(5): 1081-91, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25660753

RESUMEN

Cationic antimicrobial peptides (CAMPs) are important elements of innate immunity in higher organisms, representing an ancient defense mechanism against pathogenic bacteria. These peptides exhibit broad-spectrum antimicrobial activities, utilizing mechanisms that involve targeting bacterial membranes. Recently, a 34-residue CAMP (NA-CATH) was identified in cDNA from the venom gland of the Chinese cobra (Naja atra). A semi-conserved 11-residue pattern observed in the NA-CATH sequence provided the basis for generating an 11-residue truncated peptide, ATRA-1A, and its corresponding D-peptide isomer. While the antimicrobial and biophysical properties of the ATRA-1A stereoisomers have been investigated, their modes of action remain unclear. More broadly, mechanistic differences that can arise when investigating minimal antimicrobial units within larger naturally occurring CAMPs have not been rigorously explored. Therefore, the studies reported here are focused on this question and the interactions of full-length NA-CATH and the truncated ATRA-1A isomers with bacterial membranes. The results of these studies indicate that in engineering the ATRA-1A isomers, the associated change in peptide length and charge dramatically impacts not only their antimicrobial effectiveness, but also the mechanism of action they employ relative to that of the full-length parent peptide NA-CATH. These insights are relevant to future efforts to develop shorter versions of larger naturally occurring CAMPs for potential therapeutic applications.


Asunto(s)
Antibacterianos/farmacología , Bacillus cereus/efectos de los fármacos , Catelicidinas/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Oligopéptidos/farmacología , Fragmentos de Péptidos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Bacillus cereus/metabolismo , Bacillus cereus/ultraestructura , Catelicidinas/química , Catelicidinas/aislamiento & purificación , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Relación Dosis-Respuesta a Droga , Venenos Elapídicos/química , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Cinética , Viabilidad Microbiana/efectos de los fármacos , Oligopéptidos/química , Fragmentos de Péptidos/química , Estructura Secundaria de Proteína , Relación Estructura-Actividad
7.
J Proteome Res ; 14(10): 4282-95, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26327436

RESUMEN

The identification and sequencing of novel cationic antimicrobial peptides (CAMPs) have proven challenging due to the limitations associated with traditional proteomics methods and difficulties sequencing peptides present in complex biomolecular mixtures. We present here a process for large-scale identification and de novo-assisted sequencing of newly discovered CAMPs using microparticle capture followed by tandem mass spectrometry equipped with electron-transfer dissociation (ETD). This process was initially evaluated and verified using known CAMPs with varying physicochemical properties. The effective parameters were then applied in the analysis of a complex mixture of peptides harvested from American alligator plasma using custom-made (Bioprospector) functionalized hydrogel particles. Here, we report the successful sequencing process for CAMPs that has led to the identification of 340 unique peptides and the discovery of five novel CAMPs from American alligator plasma.


Asunto(s)
Caimanes y Cocodrilos/sangre , Péptidos Catiónicos Antimicrobianos/sangre , Proteínas Sanguíneas/aislamiento & purificación , Descubrimiento de Drogas , Electrones , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Bacillus cereus/efectos de los fármacos , Bacillus cereus/crecimiento & desarrollo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/farmacología , Cromatografía Liquida , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Hidrogeles , Pruebas de Sensibilidad Microbiana , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Tamaño de la Partícula , Proteómica/instrumentación , Proteómica/métodos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Análisis de Secuencia de Proteína/métodos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
8.
Biopolymers ; 100(4): 387-401, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23532931

RESUMEN

Cationic antimicrobial peptides (CAMPs) represent an ancient defense mechanism against invading bacteria, with peptides such as the cathelicidins being essential elements of vertebrate innate immunity. CAMPs are typically associated with broad-spectrum antimicrobial potency and limited bacterial resistance. The cathelicidin identified from the elapid snake Naja atra (NA-CATH) contains a semi-conserved repeated 11-residue motif (ATRA motif) with a sequence pattern consistent with formation of an amphipathic helical conformation. Short peptide amides (ATRA-1, -1A, -1P, and -2) generated based on the pair of ATRA motifs in NA-CATH exhibited varied antimicrobial potencies. The small size of the ATRA peptides, coupled with their varied antimicrobial performances, make them interesting models to study the impact various physico-chemical properties have on antimicrobial performance in helical CAMPs. Accordingly, the D- and L-enantiomers of the peptide ATRA-1A, which in earlier studies had shown both good antimicrobial performance and strong helical character, were investigated in order to assess the impact peptide stereochemistry has on antimicrobial performance and interaction with chiral membranes. The ATRA-1A isomers exhibit varied potencies against four bacterial strains, and their conformational properties in the presence of mixed zwitterionic/anionic liposomes are influenced by anionic lipid content. These studies reveal subtle differences in the properties of the peptide isomers. Differences are also seen in the abilities of the ATRA-1A isomers to induce liposome fusion/aggregation, bilayer rearrangement and lysing through turbidity studies and fluorescence microscopy. The similarities and differences in the properties of the ATRA-1A isomers could aid in efforts to develop D-peptide-based therapeutics using high-performing L-peptides as templates.


Asunto(s)
Secuencia de Aminoácidos , Catelicidinas , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Isomerismo , Datos de Secuencia Molecular , Péptidos/química , Estructura Secundaria de Proteína
9.
SLAS Discov ; 28(6): 270-274, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36921802

RESUMEN

With over 39,000 students, and research expenditures in excess of $200 million, George Mason University (GMU) is the largest R1 (Carnegie Classification of very high research activity) university in Virginia. Mason scientists have been involved in the discovery and development of novel diagnostics and therapeutics in areas as diverse as infectious diseases and cancer. Below are highlights of the efforts being led by Mason researchers in the drug discovery arena. To enable targeted cellular delivery, and non-biomedical applications, Veneziano and colleagues have developed a synthesis strategy that enables the design of self-assembling DNA nanoparticles (DNA origami) with prescribed shape and size in the 10 to 100 nm range. The nanoparticles can be loaded with molecules of interest such as drugs, proteins and peptides, and are a promising new addition to the drug delivery platforms currently in use. The investigators also recently used the DNA origami nanoparticles to fine tune the spatial presentation of immunogens to study the impact on B cell activation. These studies are an important step towards the rational design of vaccines for a variety of infectious agents. To elucidate the parameters for optimizing the delivery efficiency of lipid nanoparticles (LNPs), Buschmann, Paige and colleagues have devised methods for predicting and experimentally validating the pKa of LNPs based on the structure of the ionizable lipids used to formulate the LNPs. These studies may pave the way for the development of new LNP delivery vehicles that have reduced systemic distribution and improved endosomal release of their cargo post administration. To better understand protein-protein interactions and identify potential drug targets that disrupt such interactions, Luchini and colleagues have developed a methodology that identifies contact points between proteins using small molecule dyes. The dye molecules noncovalently bind to the accessible surfaces of a protein complex with very high affinity, but are excluded from contact regions. When the complex is denatured and digested with trypsin, the exposed regions covered by the dye do not get cleaved by the enzyme, whereas the contact points are digested. The resulting fragments can then be identified using mass spectrometry. The data generated can serve as the basis for designing small molecules and peptides that can disrupt the formation of protein complexes involved in disease processes. For example, using peptides based on the interleukin 1 receptor accessory protein (IL-1RAcP), Luchini, Liotta, Paige and colleagues disrupted the formation of IL-1/IL-R/IL-1RAcP complex and demonstrated that the inhibition of complex formation reduced the inflammatory response to IL-1B. Working on the discovery of novel antimicrobial agents, Bishop, van Hoek and colleagues have discovered a number of antimicrobial peptides from reptiles and other species. DRGN-1, is a synthetic peptide based on a histone H1-derived peptide that they had identified from Komodo Dragon plasma. DRGN-1 was shown to disrupt bacterial biofilms and promote wound healing in an animal model. The peptide, along with others, is being developed and tested in preclinical studies. Other research by van Hoek and colleagues focuses on in silico antimicrobial peptide discovery, screening of small molecules for antibacterial properties, as well as assessment of diffusible signal factors (DFS) as future therapeutics. The above examples provide insight into the cutting-edge studies undertaken by GMU scientists to develop novel methodologies and platform technologies important to drug discovery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Proteína Accesoria del Receptor de Interleucina-1 , Animales , Universidades , ADN , Descubrimiento de Drogas
10.
Polymers (Basel) ; 14(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36365747

RESUMEN

The field of drug discovery has seen significant progress in recent years. These advances drive the development of new technologies for testing compound's effectiveness, as well as their adverse effects on organs and tissues. As an auxiliary tool for drug discovery, smart biomaterials and biopolymers produced from biodegradable monomers allow the manufacture of multifunctional polymeric devices capable of acting as biosensors, of incorporating bioactives and biomolecules, or even mimicking organs and tissues through self-association and organization between cells and biopolymers. This review discusses in detail the use of natural monomers for the synthesis of hydrogels via green routes. The physical, chemical and morphological characteristics of these polymers are described, in addition to emphasizing polymer-particle-protein interactions and their application in proteomics studies. To highlight the diversity of green synthesis methodologies and the properties of the final hydrogels, applications in the areas of drug delivery, antibody interactions, cancer therapy, imaging and biomarker analysis are also discussed, as well as the use of hydrogels for the discovery of antimicrobial and antiviral peptides with therapeutic potential.

11.
BMC Microbiol ; 11: 114, 2011 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-21605457

RESUMEN

BACKGROUND: Chronic, infected wounds typically contain multiple genera of bacteria, including Staphylococcus aureus, many of which are strong biofilm formers. Bacterial biofilms are thought to be a direct impediment to wound healing. New therapies that focus on a biofilm approach may improve the recovery and healing rate for infected wounds. In this study, cathelicidins and related short, synthetic peptides were tested for their anti-microbial effectiveness as well as their ability to inhibit the ability of S. aureus to form biofilms. RESULTS: The helical human cathelicidin LL-37 was tested against S. aureus, and was found to exhibit effective anti-microbial, anti-attachment as well as anti-biofilm activity at concentrations in the low µg/ml range. The effect of peptide chirality and associated protease-resistance was explored through the use of an all-D amino acid peptide, D-LL-37, and in turn compared to scrambled LL-37. Helical cathelicidins have been identified in other animals such as the Chinese cobra, Naja atra (NA-CATH). We previously identified an 11-residue imperfectly repeated pattern (ATRA motif) within the sequence of NA-CATH. A series of short peptides (ATRA-1, -2, -1A), as well as a synthetic peptide, NA-CATH:ATRA1-ATRA1, were designed to explore the significance of the conserved residues within the ATRA motif for anti-microbial activity. The CD spectrum of NA-CATH and NA-CATH:ATRA1-ATRA1 revealed the structural properties of these peptides and suggested that helicity may factor into their anti-microbial and anti-biofilm activities. CONCLUSIONS: The NA-CATH:ATRA1-ATRA1 peptide inhibits the production of biofilm by S. aureus in the presence of salt, exhibiting anti-biofilm activity at lower peptide concentrations than NA-CATH, LL-37 and D-LL-37; and demonstrates low cytoxicity against host cells but does not affect bacterial attachment. The peptides utilized in this anti-biofilm approach may provide templates for a new group of anti-microbials and potential future topical therapeutics for treating chronic wound infections.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Biopelículas/efectos de los fármacos , Drogas de Diseño/farmacología , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Adhesión Bacteriana/efectos de los fármacos , Drogas de Diseño/química , Humanos , Catelicidinas
12.
Exp Dermatol ; 20(1): 29-34, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21158936

RESUMEN

BACKGROUND: Melanoma represents only 4% of all skin cancers, but nearly 80% of skin cancer deaths. This manuscript applies several new measurement technologies with the purpose of elucidating molecular signatures of melanoma aggressiveness. PURPOSE: We sought to determine whether low-abundant serum proteins related to apoptotic pathways could be measured and correlated with defined melanoma subtypes. Hydrogel core shell nanoparticles, a new technology capable of selectively entrapping low molecular weight proteins and protecting them from enzymatic degradation, were used to capture candidate serum biomarkers. Biomarker levels were correlated with confocal microscopy, thereby representing a combination of new technologies for in vivo histologic documentation. RESULTS: Among a panel of analyzed serum proteins, Bak was differentially expressed between nevi and melanomas. Melanomas with higher Bak serum levels exhibited more pronounced junctional activity on confocal imaging, whereas lesions with 'sparse' dermal nests had weak Bak expression. CONCLUSIONS: Our study links serum proteome analysis with confocal microscopic clinical in vivo histologic classification of melanomas. Bak has not been previously measured in serum. Bak differential expression among melanoma subtypes confirms the importance of the apoptotic pathway as a contributor to melanoma aggressiveness.


Asunto(s)
Biomarcadores de Tumor/sangre , Melanoma/sangre , Neoplasias Cutáneas/sangre , Proteína Destructora del Antagonista Homólogo bcl-2/sangre , Adulto , Becaplermina , Humanos , Melanoma/diagnóstico , Melanoma/patología , Melanoma/secundario , Microscopía Confocal , Persona de Mediana Edad , Nanopartículas , Nanotecnología , Nevo Pigmentado/sangre , Nevo Pigmentado/diagnóstico , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-bcl-2/sangre , Proteínas Proto-Oncogénicas c-sis , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/patología
13.
Biochem Biophys Res Commun ; 396(2): 246-51, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20399752

RESUMEN

Francisella infects the lungs causing pneumonic tularemia. Focusing on the lung's host defense, we have examined antimicrobial peptides as part of the innate immune response to Francisella infection. Interest in antimicrobial peptides, such as the cathelicidins, has grown due their potential therapeutic applications and the increasing problem of bacterial resistance to commonly used antibiotics. Only one human cathelicidin, LL-37, has been characterized. Helical cathelicidins have also been discovered in snakes including the Chinese King Cobra, Naja atra (NA-CATH). Four synthetic 11-residue peptides (ATRA-1, -2, -1A and -1P) containing variations of a repeated motif within NA-CATH were designed. We hypothesized that these smaller synthetic peptides could have excellent antimicrobial effectiveness with shorter length (and less cost), making them strong potential candidates for development into broad-spectrum antimicrobial compounds. We tested the susceptibility of F. novicida to four ATRA peptides, LL-37, and NA-CATH. Two of the ATRA peptides had high antimicrobial activity (microM), while the two proline-containing ATRA peptides had low activity. The ATRA peptides did not show significant hemolytic activity even at high peptide concentration, indicating low cytotoxicity against host cells. NA-CATH killed Francisella bacteria more quickly than LL-37. However, LL-37 was the most effective peptide against F. novicida (EC50=50 nM). LL-37 mRNA was induced in A549 cells by Francisella infection. We recently demonstrated that F. novicida forms in vitro biofilms. LL-37 inhibited F. novicida biofilm formation at sub-antimicrobial concentrations. Understanding the properties of these peptides, and their endogenous expression in the lung could lead to potential future therapeutic interventions for this lung infection.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Biopelículas/efectos de los fármacos , Catelicidinas/farmacología , Francisella/efectos de los fármacos , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Catelicidinas/química , Línea Celular , Francisella/fisiología , Humanos , Datos de Secuencia Molecular
14.
Biochem Biophys Res Commun ; 396(4): 825-30, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20438706

RESUMEN

We have identified an 11-residue pattern (KR(F/A)KKFFKK(L/P)K), which we have named the ATRA motif, within the sequence of the Chinese cobra (Naja atra) cathelicidin. A series of 11-residue peptides (ATRA-1, -2, -1A and -1P) were designed to probe the significance of the conserved residues within the ATRA motif, and their contributions to antimicrobial performance. The antimicrobial activities of the peptides were assessed against Escherichia coli K12 strain and Aggregatibacter actinomycetemcomitans Y4. ATRA-1 and -1A, demonstrated potencies comparable to that of N. atra cathelicidin. Structural examination by circular dichroism of the four short peptides suggested the significance of specific amino acid positions within the motif by their contribution to helicity. The results of these studies indicate that short peptides derived from the repeated ATRA motif from the N. atra cathelicidin can demonstrate both low toxicity against host cells and high antimicrobial activity against the gram-negative bacteria used in this study. They constitute novel, effective antimicrobial peptides that are much shorter (and thus less expensive to produce) than the natural cathelicidins, and they may represent new templates for therapeutic drug development.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Elapidae/metabolismo , Escherichia coli/efectos de los fármacos , Oligopéptidos/farmacología , Pasteurellaceae/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Datos de Secuencia Molecular , Oligopéptidos/química , Fragmentos de Péptidos/química , Catelicidinas
15.
Colloids Surf A Physicochem Eng Asp ; 362(1-3): 8-19, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20871782

RESUMEN

The analysis of low abundance and low molecular weight biomolecules is challenging due to their labile nature and the presence of high abundance, high molecular weight species such as serum albumin, which can hinder their detection. Functionalized hydrogel particles have proven to be ideally suited for this application. We here report the synthesis of hydrogel core and core-shell particles with incorporated Cibacron Blue F3G-A, and analysis of their harvesting properties. Hydrogel particle scaffolds consisting of cross-linked N-isopropylacrylamide and allylamine copolymers were synthesized via surfactant-free precipitation polymerization, with the blue dye subsequently affixed via a nucleophilic substitution reaction. The dye-functionalized core and core-shell particles were found to efficiently harvest and sequester dilute low molecular weight peptides and proteins from solution, with the core-shell particles more effectively excluding larger proteins. Moreover, proteins bound by core and core-shell particles containing blue dye were protected from tryptic degradation. These findings suggest that core and core-shell hydrogel particles containing Cibacron Blue F3G-A constitute promising new tools for peptide/protein biomarker harvesting applications.

16.
J Med Microbiol ; 69(11): 1262-1272, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33084564

RESUMEN

Introduction. The rise of carbapenem-resistant enterobacteriaceae (CRE) is a growing crisis that requires development of novel therapeutics.Hypothesis. To this end, cationic antimicrobial peptides (CAMPs) represent a possible source of new potential therapeutics to treat difficult pathogens such as carbapenem-resistant Klebsiella pneumoniae (CRKP), which has gained resistance to many if not all currently approved antibiotics, making treatment difficult.Aim. To examine the anti-CRKP antimicrobial activity of the predicted cathelicidins derived from Varanus komodoensis (Komodo dragon) as well as synthetic antimicrobial peptides that we created.Methodology. We determined the minimum inhibitory concentrations of the peptides against CRKP. We also characterized the abilities of these peptides to disrupt the hyperpolarization of the bacterial membrane as well as their ability to form pores in the membrane.Results. We did not observe significant anti-CRKP activity for the predicted native Komodo cathelicidin peptides. We found that the novel peptides DRGN-6,-7 and -8 displayed significant antimicrobial activity against CRKP with MICs of 4-8 µg ml-1. DRGN-6 peptide was the most effective peptide against CRKP. Unfortunately, these peptides showed higher than desired levels of hemolysis, although in vivo testing in the waxworm Galleria mellonella showed no mortality associated with treatment by the peptide; however, CRKP-infected waxworms treated with peptide did not show an improvement in survival.Conclusion. Given the challenges of treating CRKP, identification of peptides with activity against it represents a promising avenue for further research. Given DRGN-6's similar level of activity to colistin, DRGN-6 is a promising template for the development of novel antimicrobial peptide-based therapeutics.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Lagartos , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Carbapenémicos/farmacología , Colistina/farmacología , Infecciones por Klebsiella , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/microbiología , Catelicidinas
17.
Sci Rep ; 10(1): 19260, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159146

RESUMEN

The emergence of viral epidemics throughout the world is of concern due to the scarcity of available effective antiviral therapeutics. The discovery of new antiviral therapies is imperative to address this challenge, and antiviral peptides (AVPs) represent a valuable resource for the development of novel therapies to combat viral infection. We present a new machine learning model to distinguish AVPs from non-AVPs using the most informative features derived from the physicochemical and structural properties of their amino acid sequences. To focus on those features that are most likely to contribute to antiviral performance, we filter potential features based on their importance for classification. These feature selection analyses suggest that secondary structure is the most important peptide sequence feature for predicting AVPs. Our Feature-Informed Reduced Machine Learning for Antiviral Peptide Prediction (FIRM-AVP) approach achieves a higher accuracy than either the model with all features or current state-of-the-art single classifiers. Understanding the features that are associated with AVP activity is a core need to identify and design new AVPs in novel systems. The FIRM-AVP code and standalone software package are available at https://github.com/pmartR/FIRM-AVP with an accompanying web application at https://msc-viz.emsl.pnnl.gov/AVPR .


Asunto(s)
Secuencia de Aminoácidos , Antivirales/química , Aprendizaje Automático , Péptidos , Programas Informáticos , Péptidos/química , Péptidos/genética
18.
Biochem Biophys Res Commun ; 371(4): 670-4, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18452706

RESUMEN

The ability of human beta-defensins hBD-1, hBD-2, and hBD-3 to exert direct in vitro antimicrobial effects was evaluated using Francisella tularensis Live Vaccine Strain (LVS) and Francisella novicida. While hBD-2 showed some antimicrobial activity in these assays, only hBD-3 demonstrated significant potency against Francisella. Francisella tularensis LVS infection induced elevated levels of hBD-2 mRNA in human airway epithelial (A549) cells, while having no significant impact on the levels of hBD-3 and only a moderate effect on the level of hBD-1 mRNA. Francisella infection avoided stimulating the production of the most potent anti-Francisella host peptide, hBD-3, in A549 cells, although hBD-3 is stimulated by other treatments. The differential induction of beta-defensins in Francisella infected lung epithelial cells suggests a complex dynamic in the expression of antimicrobial peptides and the innate immune response.


Asunto(s)
Francisella tularensis/inmunología , Pulmón/inmunología , Pulmón/microbiología , beta-Defensinas/metabolismo , Línea Celular , Francisella tularensis/efectos de los fármacos , Humanos , Inmunidad Innata , Pulmón/efectos de los fármacos , ARN Mensajero/metabolismo , beta-Defensinas/genética , beta-Defensinas/farmacología
19.
Colloids Surf B Biointerfaces ; 161: 471-479, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29128833

RESUMEN

Hydrogel particles have proven to be powerful tools for the capture and concentration of low abundance, low molecular weight peptides and proteins from complex biofluids, such as plasma. The primary means of recovering and washing the particles following harvesting is through centrifugation, which can be a very time-consuming process depending on harvest conditions. To improve the process of particle recovery, washing, and elution we have developed new particle formulations: incorporating N-t-butylacrylamide (tBA) in the polymer backbone with monomers bearing more acidic functional groups and higher degrees of cross-linking. These particle formulations produce a stable architecture that does not significantly respond to changes in environmental conditions, such as pH and temperature. These two new formulations impart structural stability to the particle, control swelling, and improve pelleting through centrifugation, even at high pH values. These structurally stable microparticles yield improved particle recovery while maintaining the peptide capture properties of the particle.


Asunto(s)
Acrilamidas/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Péptidos/química , Acrilatos/química , Alcanosulfonatos/química , Composición de Medicamentos , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Tamaño de la Partícula
20.
Artículo en Inglés | MEDLINE | ID: mdl-28649410

RESUMEN

Cationic antimicrobial peptides are multifunctional molecules that have a high potential as therapeutic agents. We have identified a histone H1-derived peptide from the Komodo dragon (Varanus komodoensis), called VK25. Using this peptide as inspiration, we designed a synthetic peptide called DRGN-1. We evaluated the antimicrobial and anti-biofilm activity of both peptides against Pseudomonas aeruginosa and Staphylococcus aureus. DRGN-1, more than VK25, exhibited potent antimicrobial and anti-biofilm activity, and permeabilized bacterial membranes. Wound healing was significantly enhanced by DRGN-1 in both uninfected and mixed biofilm (Pseudomonas aeruginosa and Staphylococcus aureus)-infected murine wounds. In a scratch wound closure assay used to elucidate the wound healing mechanism, the peptide promoted the migration of HEKa keratinocyte cells, which was inhibited by mitomycin C (proliferation inhibitor) and AG1478 (epidermal growth factor receptor inhibitor). DRGN-1 also activated the EGFR-STAT1/3 pathway. Thus, DRGN-1 is a candidate for use as a topical wound treatment. Wound infections are a major concern; made increasingly complicated by the emerging, rapid spread of bacterial resistance. The novel synthetic peptide DRGN-1 (inspired by a peptide identified from Komodo dragon) exhibits pathogen-directed and host-directed activities in promoting the clearance and healing of polymicrobial (Pseudomonas aeruginosa & Staphylococcus aureus) biofilm infected wounds. The effectiveness of this peptide cannot be attributed solely to its ability to act upon the bacteria and disrupt the biofilm, but also reflects the peptide's ability to promsote keratinocyte migration. When applied in a murine model, infected wounds treated with DRGN-1 healed significantly faster than did untreated wounds, or wounds treated with other peptides. The host-directed mechanism of action was determined to be via the EGFR-STAT1/3 pathway. The pathogen-directed mechanism of action was determined to be via anti-biofilm activity and antibacterial activity through membrane permeabilization. This novel peptide may have potential as a future therapeutic for treating infected wounds.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda