Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biotechnol ; 115(4): 345-53, 2005 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-15639096

RESUMEN

We studied in batch assays the transformation and toxicity of anthraquinone dyes during incubations with anaerobic granular sludge under mesophilic (30 degrees C) and thermophilic (55 degrees C) conditions. Additionally, the electron shuttling capacity of the redox mediator anthraquinone-2-sulfonic acid (AQS) and subsequent increase on decolourisation rates was investigated on anthraquinone dyes. Compared with incubations at 30 degrees C, serum bottles at 55 degrees C presented distinctly higher decolourisation rates not only with an industrial wastewater containing anthraquinone dyes, but also with model compounds. Compared with batch assays at 30 degrees C, the first-order rate constant "k" of the Reactive Blue 5 (RB5) was enhanced 11-fold and 6-fold for bottles at 55 degrees C supplemented and free of AQS, respectively. However, the anthraquinone dye Reactive Blue 19 (RB19) demonstrated a very strong toxic effect on volatile fatty acids (VFA) degradation and methanogenesis at both 30 degrees C and 55 degrees C. The apparent inhibitory concentrations of RB19 exerting 50% reduction in methanogenic activity (IC50-value) were 55 mg l(-1) at 30 degrees C and 45 mg l(-1) at 55 degrees C. Further experiments at both temperatures revealed that RB19 was mainly toxic to methanogens, because the glucose oxidizers including acetogens, propionate-forming, butyrate-forming and ethanol-forming microorganisms were not affected by the dye toxicity.


Asunto(s)
Antraquinonas/farmacología , Colorantes/metabolismo , Colorantes/farmacología , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Antraquinonas/química , Reactores Biológicos , Colorantes/química , Ácidos Grasos Volátiles/metabolismo , Concentración 50 Inhibidora , Cinética , Metano/análisis , Metano/metabolismo , Estructura Molecular , Temperatura , Industria Textil , Contaminantes Químicos del Agua , Purificación del Agua/métodos
2.
Water Res ; 37(13): 3098-109, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-14509696

RESUMEN

Azo dye reduction results from a combination of biotic and abiotic processes during the anaerobic treatment of dye containing effluents. Biotic processes are due to enzymatic reactions whereas the chemical reaction is due to sulfide. In this research, the relative impact of the different azo dye reduction mechanisms was determined by investigating the reduction of Acid Orange 7 (AO7) and Reactive Red 2 (RR2) under different conditions. Reduction rates of two azo dyes were compared in batch assays over a range of sulphide concentrations in the presence of living or inactivated anaerobic granular sludge. Biological dye reduction followed zero order kinetics and chemical dye reduction followed second-order rate kinetics as a function of sulfide and dye concentration. Chemical reduction of the dyes was greatly stimulated in the presence of autoclaved sludge: whereas chemical dye reduction was not affected by living or gamma-irradiated-sludge. Presumably redox-mediating enzyme cofactors released by cell lysis contributed to the stimulatory effect. This hypothesis was confirmed in assays evaluating the chemical reduction of AO7 utilizing riboflavin, representative of the heat stable redox-mediating moieties of common occurring flavin enzyme cofactors. Sulfate influenced dye reduction in accordance to biogenic sulfide formation from sulfate reduction. In assays lacking sulfur compounds, dye reduction only readily occurred in the presence of living granular sludge, demonstrating the importance of enzymatic mechanisms. Both chemical and biological mechanisms of dye reduction were greatly stimulated by the addition of the redox-mediating compound, anthraquinone-disulfonate. Based on an analysis of the kinetics and demonstration in lab-scale upward-flow anaerobic sludge bed reactors, the relative importance of chemical dye reduction mechanisms in high rate anaerobic bioreactors was shown to be small due to the high biomass levels in the reactors.


Asunto(s)
Compuestos Azo/metabolismo , Colorantes/metabolismo , Contaminantes del Agua/metabolismo , Compuestos Azo/química , Bacterias Anaerobias/fisiología , Biomasa , Colorantes/química , Cinética , Oxidación-Reducción , Sulfuros/química , Industria Textil , Eliminación de Residuos Líquidos
3.
Chemosphere ; 55(9): 1149-57, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15081755

RESUMEN

The impact of different redox mediators on colour removal of azo dye model compounds and textile wastewater by thermophilic anaerobic granular sludge (55 degrees C) was investigated in batch assays. Additionally, a comparative study between mesophilic (30 degrees C) and thermophilic (55 degrees C) colour removal was performed with textile wastewater, either in the presence or absence of a redox mediator. The present work clearly evidences the advantage of colour removal at 55 degrees C compared with 30 degrees C when dealing with azo coloured wastewaters. The impact of the redox mediators anthraquinone-2,6-disulfonate (AQDS), anthraquinone-2-sulfonate (AQS) and riboflavin was evident with all dyes, increasing decolourisation rates up to 8-fold compared with the mediator-free incubations. The generation of the hydroquinone form AH2QDS, i.e. the reduced form of AQDS, was extremely accelerated at 55 degrees C compared with 30 degrees C. Furthermore, no lag-phase was observed at 55 degrees C. Based on the present results we postulate that the production/transfer of reducing equivalents was the process rate-limiting step, which was accelerated by the temperature increase. It is conclusively stated that 55 degrees C is a more effective temperature for azo dye reduction than 30 degrees C, which on the one hand can be attributed to the faster production/transfer of reducing equivalents, but also to the decrease in activation energy requirements.


Asunto(s)
Compuestos Azo/metabolismo , Bacterias Anaerobias/metabolismo , Colorantes/metabolismo , Oxidación-Reducción , Temperatura , Eliminación de Residuos Líquidos/métodos , Antraquinonas/química , Reactores Biológicos , Color , Cinética , Riboflavina/química , Aguas del Alcantarillado/microbiología , Espectrofotometría
4.
Biotechnol Biofuels ; 1(1): 14, 2008 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-18699996

RESUMEN

INTRODUCTION: The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of greenhouse gas emissions is by large-scale substitution of petrochemically derived transport fuels by the use of carbon dioxide-neutral biofuels, such as ethanol derived from lignocellulosic material. RESULTS: This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight) is converted to ethanol via simultaneous saccharification and fermentation by commercial hydrolytic enzymes and bakers' yeast (Saccharomyces cerevisiae). After 53 hours of incubation, an ethanol concentration of 21.4 g/liter was detected, corresponding to a 48% glucan-to-ethanol conversion of the theoretical maximum. The xylan fraction remained mostly in the soluble oligomeric form (52%) in the fermentation broth, probably due to the inability of this yeast to convert pentoses. A preliminary assessment of the distilled ethanol quality showed that it meets transportation ethanol fuel specifications. The distillation residue, which contained non-hydrolysable and non-fermentable (in)organic compounds, was divided into a liquid and solid fraction. The liquid fraction served as substrate for the production of biogas (methane), whereas the solid fraction functioned as fuel for thermal conversion (combustion), yielding thermal energy, which can be used for heat and power generation. CONCLUSION: Based on the achieved experimental values, 16.7 kg of pretreated wheat straw could be converted to 1.7 kg of ethanol, 1.1 kg of methane, 4.1 kg of carbon dioxide, around 3.4 kg of compost and 6.6 kg of lignin-rich residue. The higher heating value of the lignin-rich residue was 13.4 MJ thermal energy per kilogram (dry basis).

5.
Environ Sci Technol ; 37(2): 402-8, 2003 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-12564915

RESUMEN

Activated carbon (AC) has a long history of applications in environmental technology as an adsorbent of pollutants for the purification of drinking waters and wastewaters. Here we describe novel role of AC as redox mediator in accelerating the reductive transformation of pollutants as well as a terminal electron acceptor in the biological oxidation of an organic substrate. This study explores the use of AC as an immobilized redox mediator for the reduction of a recalcitrant azo dye (hydrolyzed Reactive Red 2) in laboratory-scale anaerobic bioreactors, using volatile fatty acids as electron donor. The incorporation of AC in the sludge bed greatly improved dye removal and formation of aniline, a dye reduction product. These results indicate that AC acts as a redox mediator. In supporting batch experiments, bacteria were shown to oxidize acetate at the expense of reducing AC. Furthermore, AC greatly accelerated the chemical reduction of an azo dye by sulfide. The results taken as a whole clearly suggest that AC accepts electrons from the microbial oxidation of organic acids and transfers the electrons to azo dyes, accelerating their reduction. A possible role of quinone surface groups in the catalysis is discussed.


Asunto(s)
Compuestos Azo/metabolismo , Carbono/química , Colorantes/metabolismo , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Adsorción , Biotransformación , Catálisis , Electrones , Oxidación-Reducción , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda