Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Am Chem Soc ; 144(10): 4559-4571, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35192354

RESUMEN

Metalloproteins with active sites containing di-Fe cores exhibit diverse chemical reactivity that is linked to the precise transfer of protons and electrons which directly involve the di-Fe units. The redox conversions are commonly corroborated by spectroscopic methods, but the associated structural changes are often difficult to assess, particularly those related to proton movements. This report describes the development of di-Fe complexes in which the movements of protons and electrons are pinpointed during the stepwise oxidation of a di-FeII species to one with an FeIIIFeIV core. Complex formation was promoted using the phosphinic amido tripodal ligand [poat]3- (N,N',N″-[nitrilotris(ethane-2,1-diyl)]tris(P,P-diphenylphosphinic amido)) that provided dynamic coordination spheres that assisted in regulating both electron and proton transfer processes. Oxidation of an [FeII-(µ-OH)-FeIII] complex led to the corresponding di-FeIII species containing a hydroxido bridge that was not stable at room temperature and converted to a species containing an oxido bridging ligand and protonation of one phosphinic amido group to form [Hpoat]2-. Deprotonation led to a new species with an [FeIII-(µ-O)-FeIII] core that could be further oxidized to its FeIIIFeIV analogue. Reactions with phenols suggest homolytic cleavage of the O-H bond to give products that are consistent with the initial formation of a phenoxyl radical─spectroscopic studies indicated that the electron is transferred to the FeIV center, and the proton is initially transferred to the more sterically hindered oxido ligand but then relocates to [poat]3-. These findings offer new mechanistic insights related to the stability of and the reactions performed by di-Fe enzymes.


Asunto(s)
Compuestos Férricos , Protones , Compuestos Férricos/química , Compuestos Ferrosos , Ligandos , Oxidación-Reducción
2.
J Am Chem Soc ; 143(5): 2384-2393, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33528256

RESUMEN

Dinuclear iron centers with a bridging hydroxido or oxido ligand form active sites within a variety of metalloproteins. A key feature of these sites is the ability of the protein to control the structures around the Fe centers, which leads to entatic states that are essential for function. To simulate this controlled environment, artificial proteins have been engineered using biotin-streptavidin (Sav) technology in which Fe complexes from adjacent subunits can assemble to form [FeIII-(µ-OH)-FeIII] cores. The assembly process is promoted by the site-specific localization of the Fe complexes within a subunit through the designed mutation of a tyrosinate side chain to coordinate the Fe centers. An important outcome is that the Sav host can regulate the Fe···Fe separation, which is known to be important for function in natural metalloproteins. Spectroscopic and structural studies from X-ray diffraction methods revealed uncommonly long Fe···Fe separations that change by less than 0.3 Å upon the binding of additional bridging ligands. The structural constraints imposed by the protein host on the di-Fe cores are unique and create examples of active sites having entatic states within engineered artificial metalloproteins.


Asunto(s)
Materiales Biomiméticos/química , Hierro/química , Metaloproteínas/metabolismo , Biotina/metabolismo , Modelos Moleculares , Conformación Molecular , Estreptavidina/metabolismo
3.
Biochemistry ; 59(5): 704-716, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31887031

RESUMEN

A defining characteristic of bacterial cytochromes (cyt's) in the P460 family is an unusual cross-link connecting the heme porphyrin to the side chain of a lysyl residue in the protein backbone. Here, via proteomics of the periplasmic fraction of the ammonia-oxidizing bacterium (AOB) Nitrosomonas europaea, we report the identification of a variant member of the P460 family that contains a methionyl residue in place of the cross-linking lysine. We formally designate this protein cytochrome "c'ß-Met" to distinguish it from other members bearing different residues at this position (e.g., cyt c'ß-Phe from the methane-oxidizing Methylococcus capsulatus Bath). As isolated, the monoheme cyt c'ß-Met is high-spin (S = 5/2). Optical spectroscopy suggests that a cross-link is absent. Hydroxylamine, the substrate for the cross-linked cyt P460 from N. europaea, did not appreciably alter the optical spectrum of cyt c'ß with up to 1000-fold excess at pH 7.5. Cyt c'ß-Met did however bind 1 equiv of H2O2, and with a slight excess, Mössbauer spectroscopy indicated the formation of a semistable ferryl (FeIV═O) Compound II-like species. The corresponding electron paramagnetic resonance showed a very low intensity signal indicative of a radical at g = 2.0. Furthermore, cyt c'ß-Met exhibited guaiacol-dependent peroxidase activity (kcat = 20.0 ± 1.2 s-1; KM = 2.6 ± 0.4 mM). Unlike cyt c'ß-Met, cyt P460 showed evidence of heme inactivation in the presence of 2 equiv of H2O2 with no appreciable guaiacol-dependent peroxidase activity. Mutagenesis of the cross-linking lysyl residue to an alanine in cyt P460, however, reversed this lack of activity.


Asunto(s)
Citocromos c/metabolismo , Hemo/metabolismo , Compuestos de Hierro/metabolismo , Lisina/metabolismo , Nitrosomonas/química , Peroxidasa/metabolismo , Citocromos c/química , Citocromos c/genética , Espectroscopía de Resonancia por Spin del Electrón , Hemo/química , Compuestos de Hierro/química , Lisina/química , Modelos Moleculares , Nitrosomonas/citología , Nitrosomonas/metabolismo , Peroxidasa/química , Proteómica , Espectroscopía de Mossbauer
4.
J Am Chem Soc ; 142(27): 11804-11817, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32489096

RESUMEN

High-valent nonheme FeIV-oxido species are key intermediates in biological oxidation, and their properties are proposed to be influenced by the unique microenvironments present in protein active sites. Microenvironments are regulated by noncovalent interactions, such as hydrogen bonds (H-bonds) and electrostatic interactions; however, there is little quantitative information about how these interactions affect crucial properties of high valent metal-oxido complexes. To address this knowledge gap, we introduced a series of FeIV-oxido complexes that have the same S = 2 spin ground state as those found in nature and then systematically probed the effects of noncovalent interactions on their electronic, structural, and vibrational properties. The key design feature that provides access to these complexes is the new tripodal ligand [poat]3-, which contains phosphinic amido groups. An important structural aspect of [FeIVpoat(O)]- is the inclusion of an auxiliary site capable of binding a Lewis acid (LAII); we used this unique feature to further modulate the electrostatic environment around the Fe-oxido unit. Experimentally, studies confirmed that H-bonds and LAII s can interact directly with the oxido ligand in FeIV-oxido complexes, which weakens the Fe═O bond and has an impact on the electronic structure. We found that relatively large vibrational changes in the Fe-oxido unit correlate with small structural changes that could be difficult to measure, especially within a protein active site. Our work demonstrates the important role of noncovalent interactions on the properties of metal complexes, and that these interactions need to be considered when developing effective oxidants.


Asunto(s)
Compuestos de Hierro/química , Óxidos/química , Teoría Funcional de la Densidad , Ácidos de Lewis/química , Conformación Molecular
5.
Inorg Chem ; 59(14): 10223-10233, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32602712

RESUMEN

The BthA protein from the microorganism Burkholderia thailandensis contains two hemes with axial His/OH2 and His/Tyr coordinations separated by the closest interheme distance of 14 Å. BthA has a similar structure and belongs to the same family of multiheme cytochrome c peroxidases as MauG, which performs long-range oxidation of the partner protein methylamine dehydrogenase. Magnetic Mössbauer spectroscopy of the diferric state of BthA corroborates previous structural work identifying a high-spin (His/OH2) peroxidatic heme and a low-spin (His/Tyr) electron transfer heme. Unlike MauG, addition of H2O2 fully converts the diferric form of BthA to a stable 2e- oxidized state, allowing a new assessment of this state. The peroxidatic heme is found to be oxidized to a canonical compound II, S = 1 oxoiron(IV) heme. In contrast, the electronic properties of the oxidized His/Tyr heme are puzzling. The isomer shift of the His/Tyr heme (0.17 mm/s) is close to that of the precursor S = 1/2 Fe3+ heme (0.21 mm/s) which suggests oxidation of the Tyr. However, the spin-dipolar hyperfine coupling constants are found here to be the same as those for the ferryl peroxidatic heme, indicating that the His/Tyr heme is also a compound II, S = 1 Fe4+ heme and ruling out oxidation of the Tyr. DFT calculations indicate that the unusually high isomer shift is not attributable to the rare axial His/Tyr heme coordination. The calculations are only compatible with spectroscopy for an unusually long Fe4+-OTyr distance, which is presumably under the influence of the protein environment of the His/Tyr heme moiety in the H2O2 oxidized state of the protein. The results offer new insights into how high valence intermediates can be tuned by the protein environment for performing long-range oxidation.


Asunto(s)
Proteínas Bacterianas/química , Hemo/química , Hemoproteínas/química , Histidina/química , Tirosina/química , Burkholderia/química , Teoría Funcional de la Densidad , Peróxido de Hidrógeno/química , Hierro/química , Modelos Químicos , Oxidación-Reducción , Espectroscopía de Mossbauer
6.
Eur J Inorg Chem ; 2020(14): 1278-1285, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33986626

RESUMEN

Complexes of copper and 1,10-phenanthroline have been utilized for organic transformations over the last 50 years. In many cases these systems are impacted by reaction conditions and perform best under an inert atmosphere. Here we explore the role the 1,10-phenanthroline ligand plays on the electronic structure and redox properties of copper coordination complexes, and what benefit related ligands may provide to enhance copper-based coupling reactions. Copper(II) triflate complexes bearing 1,10-phenanthroline (phen), ([Cu(phen)2(OTf)]OTf, 1) and oxidized derivatives of phen including [Cu(edhp)2](OTf)2 (2), [Cu(pdo)2](OTf)2 (3), [Cu(dafo)2](OTf)2 (4) were prepared and characterized. X-ray crystallographic data show these related ligands subtly impacted the coordination geometry of the copper(II) ion. Complexes 1-3 had only incremental changes to the redox properties of the copper ions, complex 4 showed a drastically different redox potential affording a remarkably air stable copper(I) complex. These complexes 1-4 were then used to catalyze the C-N bond forming cross coupling between imidazole and various boronic acid substrates, where the increased stability of the copper(I) species in complex 4 appears to better support these CEL cross couplings.

7.
Inorg Chem ; 58(14): 9150-9160, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31241914

RESUMEN

The exchange-coupling constants (J) in a series of bimetallic complexes with an M2+(µ-OH)Fe3+ core (M = Mn, Fe, Ni, and Cu; series 1), which were reported in a recent study ( Sano et al. Inorg. Chem. 2017 , 56 , 14118 - 14128 ), have been analyzed with the help of density functional theory (DFT) calculations. The experimental J values of series 1 showed the remarkable property that they were virtually independent of metal M. This behavior contrasts with that observed for a related series of complexes with M2+Fe3+ cores reported by Chaudhuri and co-workers ( Biswas et al. Inorg. Chem. 2010 , 49 , 626 - 641 ) (series 2) in which J increases toward the upper end of the series. Broken symmetry DFT calculations for J, which yielded values in good agreement for the MnFe and NiFe complexes of series 1, gave for the CuFe complex a J value that was persistently much larger than that obtained from the experiment. Attempts to bridge the discrepancy by invoking various basis sets and corrections for hydrogen-bonding effects on J were not successful. The J values for series 1 were subsequently analyzed in the context of an exchange pathway model. From this analysis, it emerged that, in addition to the regular 2e-pathways, which contribute antiferromagnetic terms to J, there are also 3e-pathways that contribute ferromagnetic terms and have the propensity to keep J constant along series 1. It is shown that, while DFT evaluates the 2e-pathway terms reliably, this method seriously underestimates the 3e-pathway contributions, resulting in a too high J value for the CuFe complex of series 1. The pathway analysis of series 2 reveals that the 3e-pathway contributions to J are considerably smaller than those in series 1, resulting in J values that increase toward the upper end of the series, in accordance with the experiment.

8.
Inorg Chem ; 57(21): 13341-13350, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30299920

RESUMEN

Hydrogen bonds (H-bonds) within the secondary coordination sphere are often invoked as essential noncovalent interactions that lead to productive chemistry in metalloproteins. Incorporating these types of effects within synthetic systems has proven a challenge in molecular design that often requires the use of rigid organic scaffolds to support H-bond donors or acceptors. We describe the preparation and characterization of a new hybrid tripodal ligand ([H2pout]3-) that contains two monodeprotonated urea groups and one phosphinic amide. The urea groups serve as H-bond donors, while the phosphinic amide group serves as a single H-bond acceptor. The [H2pout]3- ligand was utilized to stabilize a series of Mn-hydroxido complexes in which the oxidation state of the metal center ranges from 2+ to 4+. The molecular structure of the MnIII-OH complex demonstrates that three intramolecular H-bonds involving the hydroxido ligand are formed. Additional evidence for the formation of intramolecular H-bonds was provided by vibrational spectroscopy in which the energy of the O-H vibration supports its assignment as an H-bond donor. The stepwise oxidation of [MnIIH2pout(OH)]2- to its higher oxidized analogs was further substantiated by electrochemical measurements and results from electronic absorbance and electron paramagnetic resonance spectroscopies. Our findings illustrate the utility of controlling both the primary and secondary coordination spheres to achieve structurally similar Mn-OH complexes with varying oxidation states.

9.
Chem Sci ; 15(8): 2817-2826, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38404374

RESUMEN

Metalloproteins with dinuclear cores are known to bind and activate dioxygen, with a subclass of these proteins having active sites containing FeMn cofactors and activities ranging from long-range proton-coupled electron transfer (PCET) to post-translational peptide modification. While mechanistic studies propose that these metallocofactors access FeIIIMnIV intermediates, there is a dearth of related synthetic analogs. Herein, the first well-characterized synthetic FeIII-(µ-O)-MnIV complex is reported; this complex shows similar spectroscopic features as the catalytically competent FeIIIMnIV intermediate X found in Class Ic ribonucleotide reductase and demonstrates PCET function towards phenolic substrates. This complex is prepared from the oxidation of the isolable FeIII-(µ-O)-MnIII species, whose stepwise assembly is facilitated by a tripodal ligand containing phosphinic amido groups. Structural and spectroscopic studies found proton movement involving the FeIIIMnIII core, whereby the initial bridging hydroxido ligand is converted to an oxido ligand with concomitant protonation of one phosphinic amido group. This series of FeMn complexes allowed us to address factors that may dictate the preference of an active site for a heterobimetallic cofactor over one that is homobimetallic: comparisons of the redox properties of our FeMn complexes with those of the di-Fe analogs suggested that the relative thermodynamic ease of accessing an FeIIIMnIV core can play an important role in determining the metal ion composition when the key catalytic steps do not require an overly potent oxidant. Moreover, these complexes allowed us to demonstrate the effect of the hyperfine interaction from non-Fe nuclei on 57Fe Mössbauer spectra which is relevant to MnFe intermediates in proteins.

10.
Dalton Trans ; 50(23): 8111-8119, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34019606

RESUMEN

Bimetallic active sites are ubiquitous in metalloenzymes and have sparked investigations of synthetic models to aid in the establishment of structure-function relationship. We previously reported a series of discrete bimetallic complexes with [FeIII-(µ-OH)-MII] cores in which the ligand framework provides distinct binding sites for two metal centers. The formation of these complexes relied on a stepwise synthetic approach in which an FeIII-OH complex containing a sulfonamido tripodal ligand served as a synthon that promoted assembly. We have utilized this approach in the present study to produce a new series of bimetallic complexes with [FeIII-(µ-OH)-MII] cores (M = Ni, Cu, Zn) by using an ancillary ligand to the FeIII center that contains phosphinic amido groups. Assembly began with formation of an FeIII-OH that was subsequently used to bind the MII fragment that contained a triazacyclononane ligand. The series of bimetallic complexes were charactered structurally by X-ray diffraction methods, spectroscopically by absorption, vibrational, electron paramagnetic resonance spectroscopies, and electrochemically by cyclic voltammetry. A notable finding is that these new [FeIII-(µ-OH)-MII] complexes displayed significantly lower reduction potentials than their sulfonamido counterparts, which paves way for future studies on high valent bimetallic complexes in this scaffold.


Asunto(s)
Metales Pesados/química , Compuestos Organometálicos/síntesis química , Cristalografía por Rayos X , Técnicas Electroquímicas , Ligandos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda