RESUMEN
A bench-scale column experiment was performed to study the removal of 31 selected organic micropollutants (MPs) and phosphorus by lignite, xyloid lignite (Xylit), granular activated carbon (GAC), Polonite® and sand over a period of 12 weeks. In total 29 out of the 31â¯MPs showed removal efficiency >90% by GAC with an average removal of 97⯱â¯6%. Xylit and lignite were less efficient with an average removal of 80⯱â¯28% and 68⯱â¯29%, respectively. The removal efficiency was found to be impacted by the characterization of the sorbents and physicochemical properties of the compounds, as well as the interaction between the sorbents and compounds. For instance, Xylit and lignite performed well for relatively hydrophobic (log octanol/water partition coefficient (Kow) ≥3) MPs, while the removal efficiency of moderately hydrophilic, highly hydrophilic and negatively charged MPs were lower. The organic sorbents were found to have more functional groups at their surfaces, which might explain the higher adsorption of MPs to these sorbents. The removal of several MPs improved after four weeks in sand, Xylit, GAC and lignite which may be related to increased biological activity and biofilm development. GAC and sand had limited ability to remove phosphorus (12⯱â¯27% and 14⯱â¯2%, respectively), while the calcium-silicate material Polonite® precipitated phosphorus efficiently and increased the total phosphorus removal from 12% to 96% after the GAC filter.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Fósforo , Eliminación de Residuos Líquidos , Aguas ResidualesRESUMEN
Adsorption with activated carbon is widely suggested as an option for the removal of organic micropollutants including pharmaceutically active compounds (PhACs) in wastewater. In this study adsorption with granular activated carbon (GAC) and powdered activated carbon (PAC) was analyzed and compared in parallel operation at three Swedish wastewater treatment plants with the goal to achieve a 95% PhAC removal. Initially, mapping of the prevalence of over 100 substances was performed at each plant and due to low concentrations a final 22 were selected for further evaluation. These include carbamazepine, clarithromycin and diclofenac, which currently are discussed for regulation internationally. A number of commercially available activated carbon products were initially screened using effluent wastewater. Of these, a reduced set was selected based on adsorption characteristics and cost. Experiments designed with the selected carbons in pilot-scale showed that most products could indeed remove PhACs to the target level, both on total and individual basis. In a setup using internal recirculation the PAC system achieved a 95% removal applying a fresh dose of 15-20 mg/L, while carbon usage rates for the GAC application were much broader and ranged from <28 to 230 mg/L depending on the carbon product. The performance of the PAC products generally gave better results for individual PhACs in regards to carbon availability. All carbon products showed a specific adsorption for a specific PhAC meaning that knowledge of the target pollutants must be acquired before successful design of a treatment system. In spite of different configurations and operating conditions of the different wastewater treatment plants no considerable differences regarding pharmaceutical removal were observed.
Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Adsorción , Carbono , Contaminantes Químicos del Agua , Purificación del AguaRESUMEN
The removal of pharmaceutically active compounds by powdered activated carbon (PAC) in municipal wastewater is a promising solution to the problem of polluted recipient waters. Today, an efficient design strategy is however lacking with regard to high-level overall, and specific, substance removal in the large scale. The performance of PAC-based removal of pharmaceuticals was studied in pilot-scale with respect to the critical parameters; contact time and PAC dose using one PAC product selected by screening in bench-scale. The goal was a minimum of 95% removal of the pharmaceuticals present in the evaluated municipal wastewater. A set of 21 pharmaceuticals was selected from an initial 100 due to their high occurrence in the effluent water of two selected wastewater treatment plants (WWTPs) in Sweden, whereof candidates discussed for future EU regulation directives were included. By using recirculation of PAC over a treatment system using three sequential contact tanks, a combination of the benefits of powdered and granular carbon performance was achieved. The treatment system was designed so that recirculation could be introduced to any of the three tanks to investigate the effect of recirculation on the adsorption performance. This was compared to use of the setup, but without recirculation. A higher degree of pharmaceutical removal was achieved in all recirculation setups, both overall and with respect to specific substances, as compared to without recirculation. Recirculation was tested with nominal contact times of 30, 60 and 120 min and the goal of 95% removal could be achieved already at the shortest contact times at a PAC dose of 10-15 mg/L. In particular, the overall removal could be increased even to 97% and 99%, at 60 and 120 min, respectively, when the recirculation point was the first tank. Recirculation of PAC to either the first or the second contact tank proved to be comparable, while a slightly lower performance was observed with recirculation to the third tank. With regards to individual substances, clarithromycin and diclofenac were ubiquitously removed according to the set goal and in contrast, a few substances (fluconazole, irbesartan, memantine and venlafaxine) required specific settings to reach an acceptable removal.
Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Adsorción , Carbono , Carbón Orgánico , Contaminantes Químicos del AguaRESUMEN
This paper presents 10 recommendations for improving the European Medicines Agency's guidance for environmental risk assessment of human pharmaceutical products. The recommendations are based on up-to-date, available science in combination with experiences from other chemical frameworks such as the REACH-legislation for industrial chemicals. The recommendations concern: expanding the scope of the current guideline; requirements to assess the risk for development of antibiotic resistance; jointly performed assessments; refinement of the test proposal; mixture toxicity assessments on active pharmaceutical ingredients with similar modes of action; use of all available ecotoxicity studies; mandatory reviews; increased transparency; inclusion of emission data from production; and a risk management option. We believe that implementation of our recommendations would strengthen the protection of the environment and be beneficial to society. Legislation and guidance documents need to be updated at regular intervals in order to incorporate new knowledge from the scientific community. This is particularly important for regulatory documents concerning pharmaceuticals in the environment since this is a research field that has been growing substantially in the last decades.
Asunto(s)
Ambiente , Contaminantes Ambientales/análisis , Preparaciones Farmacéuticas/análisis , Medición de Riesgo , Contaminantes Ambientales/toxicidad , Humanos , IndustriasRESUMEN
Treated sewage effluents contain complex mixtures of micropollutants, raising concerns about effects on aquatic organisms. The addition of advanced treatment steps has therefore been suggested. However, some of these could potentially produce effluents affecting exposed organisms by unknown modes of action. Here, (1)H NMR (proton nuclear magnetic resonance spectroscopy) metabolomics of fish blood plasma was used to explore potential responses not identified by more targeted (chemical or biological) assays. Rainbow trout was exposed in parallel to six differently treated effluents (e.g., conventional activated sludge, addition of sand filter, further addition of ozonation and/or a moving bed biofilm reactor or a separate membrane bioreactor line). Multivariate data analysis showed changes in the metabolome (HDL, LDL, VLDL and glycerol-containing lipids, cholesterol, glucose, phosphatidylcholine, glutamine, and alanine) between treatment groups. This formed the basis for postulating a hypothesis on how exposure to effluent treated by certain processes, including ozonation, would affect the metabolic profiles of exposed fish. The hypothesis withstood testing in an independent study the following year. To conclude, (1)H NMR metabolomics proved suitable for identifying physiological responses not identified by more targeted assays used in parallel studies. Whether these changes are linked to adverse effects remains to be tested.
Asunto(s)
Metabolómica , Oncorhynchus mykiss/metabolismo , Aguas del Alcantarillado/química , Contaminantes del Agua/toxicidad , Animales , Reactores Biológicos , Espectroscopía de Resonancia Magnética , Oncorhynchus mykiss/sangre , ProtonesRESUMEN
In the present study, two conventional (with and without sand filter) and four additional (moving bed biofilm reactor, ozone, moving bed biofilm reactor combined with ozone and a membrane bio reactor) treatment technologies were operated in small-scale at Hammarby Sjöstad sewage treatment plant, Stockholm, Sweden. The effluents were tested with five short-term (≤ 7 days exposure) ecotoxicological tests, and analyzed for a number of target analytes, comprising pharmaceuticals, natural hormones and industrial chemicals. Overall, the tested effluents generated few adverse effects at lower concentrations (< 50% sewage effluent), and no major differences were observed between any of the treatments. The effluent treated with the moving bed biofilm reactor resulted in the lowest effects in the ecotoxicological tests. The most efficient treatment technology with regard to the pharmaceutical residues was the ozone treatment, which however caused negative effects in some of the ecotoxicological tests.
Asunto(s)
Reactores Biológicos , Residuos de Medicamentos/análisis , Disruptores Endocrinos/análisis , Hormonas/análisis , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Análisis de Varianza , Animales , Chlorophyta/efectos de los fármacos , Crustáceos/efectos de los fármacos , Residuos de Medicamentos/toxicidad , Embrión no Mamífero/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Hormonas/toxicidad , Ozono/metabolismo , Rhodophyta/efectos de los fármacos , Suecia , Pruebas de Toxicidad , Vibrio/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismoRESUMEN
The objective of this study was to evaluate the potential of nanofiltration (NF) and ozonation for indirect potable reuse in terms of pharmaceutical residuals. To simultaneously obtain a reasonable retentate volume for further treatment, the tests were performed at a high volume reduction factor (VRF) of 60. The feed to the pilot plant was the effluent from a BNR plant with a final process step of chemical precipitation and rapid sand filtration. Two tests were performed 1) nanofiltration of treated wastewater followed by ozonation and 2) ozonated treated wastewater as feed to NF. Of the 95 pharmaceuticals analysed, three were not removed to the quantification limit, oxazepam in the first test and glibenclamide and ketoprofen in the second. The water quality after the two processes was similar, with an overall removal of pharmaceutical residuals of 99%. There are two advantages of ozonated water as feed to NF-a higher specific flux of 35% and a potential removal of ozonation by-products. The retention of some pharmaceuticals by NF was lower than anticipated, the major removal occurring in the ozonation. A tighter NF or RO is required in order to achieve higher pharmaceutical retention for further treatment of the retentate.
Asunto(s)
Nanotecnología/métodos , Ozono , Preparaciones Farmacéuticas/aislamiento & purificación , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Ciudades , Monitoreo del Ambiente/métodos , Diseño de Equipo , Filtración/métodos , Preparaciones Farmacéuticas/análisis , Suecia , Agua/química , Abastecimiento de AguaRESUMEN
Several micropollutants show low removal efficiencies in conventional sewage treatment plants, and therefore enter the aquatic environment. To reduce the levels of micropollutants in sewage effluent, and thereby the effects on biota, a number of extra treatment steps are currently being evaluated. Two such techniques are ozonation and adsorption onto activated carbon. In this study, we investigated the efficiency of Sweden's first full-scale ozonation treatment plant at removing a number of antibiotics, antimycotics and biocides. The effect of adding granular activated carbon (GAC) on a pilot scale and pilot-scale ozonation were also evaluated. The conventional treatment (13,000 PE) with the add-on of full-scale ozonation (0.55â¯gâ¯O3/g Total organic carbon (TOC)) was able to remove most of the studied compounds (>90%), except for benzotriazoles and fluconazole (<50%). Adsorption on GAC on a pilot scale showed a higher removal efficiency than ozonation (>80% for all studied compounds). Three types of GAC were evaluated and shown to have different removal efficiencies. In particular, the GAC with the smallest particle sizes exhibited the highest removal efficiency. The results demonstrate that it is important to select an appropriate type of carbon to achieve the removal goal for specific target compounds.
Asunto(s)
Antibacterianos/análisis , Antifúngicos/análisis , Carbón Orgánico/química , Desinfectantes/análisis , Ozono/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Adsorción , Tamaño de la Partícula , Proyectos Piloto , Suecia , Eliminación de Residuos Líquidos/instrumentaciónRESUMEN
The consumption of pharmaceuticals worldwide coupled with modest removal efficiencies of sewage treatment plants have resulted in the presence of pharmaceuticals in aquatic systems globally. In this study, we investigated the environmental concentrations of a selection of 93 pharmaceuticals in 43 locations in the Baltic Sea and Skagerrak. The Baltic Sea is vulnerable to anthropogenic activities due to a long turnover time and a sensitive ecosystem in the brackish water. Thirty-nine of 93 pharmaceuticals were detected in at least one sample, with concentrations ranging between 0.01 and 80â¯ng/L. One of the pharmaceuticals investigated, the anti-epileptic drug carbamazepine, was widespread in coastal and offshore seawaters (present in 37 of 43 samples). In order to predict concentrations of pharmaceuticals in the sub-basins of the Baltic Sea, a mass balance-based grey box model was set up and the persistent, widely used carbamazepine was selected as the model substance. The model was based on hydrological and meteorological sub-basin characteristics, removal data from smaller watersheds and wastewater treatment plants, and statistics relating to population, consumption and excretion rate of carbamazepine in humans. The grey box model predicted average environmental concentrations of carbamazepine in sub-basins with no significant difference from the measured concentrations, amounting to 0.57-3.2â¯ng/L depending on sub-basin location. In the Baltic Sea, the removal rate of carbamazepine in seawater was estimated to be 6.2 10-9â¯s-1 based on a calculated half-life time of 3.5â¯years at 10⯰C, which demonstrates the long response time of the environment to measures phasing out persistent or slowly degradable substances such as carbamazepine. Sampling, analysis and grey box modelling were all valuable in describing the presence and removal of carbamazepine in the Baltic Sea.
Asunto(s)
Carbamazepina/análisis , Modelos Químicos , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , Preparaciones Farmacéuticas , Agua de Mar/químicaRESUMEN
Pharmaceutical residues and other micro-contaminants may enter aquatic environments through effluent from sewage treatment plants (STPs) and could cause adverse effects in wild fish. One strategy to alleviate this situation is to improve wastewater treatment by ozonation. To test the effectiveness of full-scale wastewater effluent ozonation at a Swedish municipal STP, the added removal efficiency was measured for 105 pharmaceuticals. In addition, gene expression, reproductive and behavioral endpoints were analyzed in zebrafish (Danio rerio) exposed on-site over 21â¯days to ozonated or non-ozonated effluents as well as to tap water. Ozone treatment (7â¯g O3/m3) removed pharmaceuticals by an average efficiency of 77% in addition to the conventional treatment, leaving 11 screened pharmaceuticals above detection limits. Differences in biological responses of the exposure treatments were recorded in gene expression, reproduction and behavior. Hepatic vitellogenin gene expression was higher in male zebrafish exposed to the ozonated effluent compared to the non-ozonated effluent and tap water treatments. The reproductive success was higher in fish exposed to ozonated effluent compared to non-ozonated effluent and to tap water. The behavioral measurements showed that fish exposed to the ozonated STP effluent were less active in swimming the first minute after placed in a novel vessel. Ozonation is a capable method for removing pharmaceuticals in effluents. However, its implementation should be thoroughly evaluated for any potential biological impact. Future research is needed for uncovering the factors which produced the in vivo responses in fish.
Asunto(s)
Ozono/química , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/fisiología , Animales , Conducta Animal/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Locomoción/efectos de los fármacos , Masculino , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Reproducción/efectos de los fármacos , Suecia , Pruebas de Toxicidad , Vitelogeninas/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Sewage contains a mixed ecosystem of diverse sets of microorganisms, including human pathogenic viruses. Little is known about how conventional as well as advanced treatments of sewage, such as ozonation, reduce the environmental spread of viruses. Analyses for viruses were therefore conducted for three weeks in influent, after conventional treatment, after additional ozonation, and after passing an open dam system at a full-scale treatment plant in Knivsta, Sweden. Viruses were concentrated by adsorption to a positively charged filter, from which they were eluted and pelleted by ultracentrifugation, with a recovery of about 10%. Ion Torrent sequencing was used to analyze influent, leading to the identification of at least 327 viral species, most of which belonged to 25 families with some having unclear classification. Real-time PCR was used to test for 21 human-related viruses in inlet, conventionally treated, and ozone-treated sewage and outlet waters. The viruses identified in influent and further analyzed were adenovirus, norovirus, sapovirus, parechovirus, hepatitis E virus, astrovirus, pecovirus, picobirnavirus, parvovirus, and gokushovirus. Conventional treatment reduced viral concentrations by one to four log10, with the exception of adenovirus and parvovirus, for which the removal was less efficient. Ozone treatment led to a further reduction by one to two log10, but less for adenovirus. This study showed that the amount of all viruses was reduced by conventional sewage treatment. Further ozonation reduced the amounts of several viruses to undetectable levels, indicating that this is a promising technique for reducing the transmission of many pathogenic human viruses.
Asunto(s)
Ozono , Aguas del Alcantarillado/virología , Virosis/virología , Virus/crecimiento & desarrollo , Eliminación de Residuos Líquidos/métodos , Adenoviridae/crecimiento & desarrollo , Animales , Humanos , Parvovirus/crecimiento & desarrollo , Suecia , Virosis/transmisión , Aguas Residuales/virología , Agua , Abastecimiento de AguaRESUMEN
Traces of active pharmaceutical ingredients (APIs) and other chemicals are demonstrated in effluents from sewage treatment plants (STPs) and they may affect quality of surface water and eventually drinking water. Treatment of effluents with granular activated carbon (GAC) or ozone to improve removal of APIs and other contaminants was evaluated at two Swedish STPs, Käppala and Uppsala (88 and 103 APIs analyzed). Biomarker responses in rainbow trout exposed to regular and additionally treated effluents were determined. GAC and ozone treatment removed 87-95% of the total concentrations of APIs detected. In Käppala, GAC removed 20 and ozonation (7 g O3/m3) 21 of 24 APIs detected in regular effluent. In Uppsala, GAC removed 25 and ozonation (5.4 g O3/m3) 15 of 25 APIs detected in effluent. GAC and ozonation also reduced biomarker responses caused by unidentified pollutants in STP effluent water. Elevated ethoxyresorufin-O-deethylase (EROD) activity in gills was observed in fish exposed to effluent in both STPs. Gene expression analysis carried out in Käppala showed increased concentrations of cytochrome P450 (CYP1As and CYP1C3) transcripts in gills and of CYP1As in liver of fish exposed to effluent. In fish exposed to GAC- or ozone-treated effluent water, gill EROD activity and expression of CYP1As and CYP1C3 in gills and liver were generally equal to or below levels in fish held in tap water. The joint application of chemical analysis and sensitive biomarkers proved useful for evaluating contaminant removal in STPs with new technologies.
Asunto(s)
Carbón Orgánico/química , Ozono/química , Preparaciones Farmacéuticas/análisis , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Animales , Biomarcadores/metabolismo , Filtración , Branquias/efectos de los fármacos , Branquias/enzimología , Hígado/efectos de los fármacos , Hígado/enzimología , Oncorhynchus mykiss/metabolismo , Suecia , Contaminantes Químicos del Agua/toxicidadRESUMEN
In this paper, a simulation benchmark of a pre-denitrifying activated sludge process is utilized in order to evaluate a supervisory aeration volume control strategy. The aeration volume control strategy has also been evaluated in a pilot plant at Hammarby Sjöstad in Stockholm, Sweden. The main idea has been to let the dissolved oxygen (DO) concentration in some of the aerated compartments be determined by a higher level controller driven by the DO concentration in other compartments. In this way, only sensors for measuring the DO concentrations are needed for the decision of time varying DO set-points. The high reliability of such sensors implies robust input values for the proposed control strategy. Moreover, it is known that the respiration rate is affected by the content of substrate and nitrogen in the compartments; therefore, the suggested manipulations of the DO set-points are indirectly determined by the current load into the plant. Compared to constant DO control and a supervisory DO set-point control strategy based on ammonium measurements in the last aerobic compartment, the suggested aeration volume control strategy could reduce the effluent nitrate and ammonium concentrations significantly without increasing the aeration energy.
Asunto(s)
Aire , Aguas del Alcantarillado/química , Benchmarking , Proyectos Piloto , SueciaRESUMEN
Sewage treatment plants (STPs) have repeatedly been suggested as "hotspots" for the emergence and dissemination of antibiotic-resistant bacteria. A critical question still unanswered is if selection pressures within STPs, caused by residual antibiotics or other co-selective agents, are sufficient to specifically promote resistance. To address this, we employed shotgun metagenomic sequencing of samples from different steps of the treatment process in three Swedish STPs. In parallel, concentrations of selected antibiotics, biocides and metals were analyzed. We found that concentrations of tetracycline and ciprofloxacin in the influent were above predicted concentrations for resistance selection, however, there was no consistent enrichment of resistance genes to any particular class of antibiotics in the STPs, neither for biocide and metal resistance genes. The most substantial change of the bacterial communities compared to human feces occurred already in the sewage pipes, manifested by a strong shift from obligate to facultative anaerobes. Through the treatment process, resistance genes against antibiotics, biocides and metals were not reduced to the same extent as fecal bacteria. The OXA-48 gene was consistently enriched in surplus and digested sludge. We find this worrying as OXA-48, still rare in Swedish clinical isolates, provides resistance to carbapenems, one of our most critically important classes of antibiotics. Taken together, metagenomics analyses did not provide clear support for specific antibiotic resistance selection. However, stronger selective forces affecting gross taxonomic composition, and with that resistance gene abundances, limit interpretability. Comprehensive analyses of resistant/non-resistant strains within relevant species are therefore warranted.
Asunto(s)
Farmacorresistencia Microbiana , Metagenómica/métodos , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Antibacterianos/análisis , Bacterias/efectos de los fármacos , Bacterias/genética , Elementos Transponibles de ADN , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Metales/análisis , ARN Ribosómico 16S , Selección Genética , Suecia , Contaminantes Químicos del Agua/análisisRESUMEN
Effluents from sewage treatment plants contain a mixture of micropollutants with the potential of harming aquatic organisms. Thus, addition of advanced treatment techniques to complement existing conventional methods has been proposed. Some of the advanced techniques could, however, potentially produce additional compounds affecting exposed organisms by unknown modes of action. In the present study the aim was to improve our understanding of how exposure to different sewage effluents affects fish. This was achieved by explorative microarray and quantitative PCR analyses of hepatic gene expression, as well as relative organ sizes of rainbow trout exposed to different sewage effluents (conventionally treated, granular activated carbon, ozonation (5 or 15 mg/L), 5 mg/L ozone plus a moving bed biofilm reactor, or UV-light treatment in combination with hydrogen peroxide). Exposure to the conventionally treated effluent caused a significant increase in liver and heart somatic indexes, an effect removed by all other treatments. Genes connected to xenobiotic metabolism, including cytochrome p450 1A, were differentially expressed in the fish exposed to the conventionally treated effluents, though only effluent treatment with granular activated carbon or ozone at 15 mg/L completely removed this response. The mRNA expression of heat shock protein 70 kDa was induced in all three groups exposed to ozone-treated effluents, suggesting some form of added stress in these fish. The induction of estrogen-responsive genes in the fish exposed to the conventionally treated effluent was effectively reduced by all investigated advanced treatment technologies, although the moving bed biofilm reactor was least efficient. Taken together, granular activated carbon showed the highest potential of reducing responses in fish induced by exposure to sewage effluents.
Asunto(s)
Exposición a Riesgos Ambientales , Regulación de la Expresión Génica , Corazón/crecimiento & desarrollo , Hígado/metabolismo , Oncorhynchus mykiss/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/toxicidad , Animales , Carbón Orgánico/metabolismo , Monitoreo del Ambiente , Proteínas HSP70 de Choque Térmico/metabolismo , Corazón/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/crecimiento & desarrollo , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Tamaño de los Órganos , Ozono/farmacología , Reacción en Cadena de la Polimerasa , Aguas del Alcantarillado , SueciaRESUMEN
Since conventional treatment technologies may fail in removing many micro-pollutants, there is currently a focus on the potential of additional treatment technologies for improved sewage treatment. The aim of the present study was to evaluate six different effluents from Henriksdal Sewage Treatment Plant in Stockholm, Sweden. The effluents were; conventionally treated effluent (chemical phosphorous removal in combination with an activated sludge process, including biological nitrogen removal and a sand filter), with additional treatments individually added to the conventional treatment; active carbon filtration, ozonation at 5 mg l(-1), ozonation at 15 mg l(-1), ozonation at 5 mg l(-1)+moving bed biofilm reactor and irradiation with ultraviolet radiation+hydrogen peroxide. The evaluation was done by characterizing and comparing the effluents using a Lefkovitch matrix model based on a life cycle test with the harpacticoid copepod Nitocra spinipes, combined with analysis of juvenile development and survival over time. The conventionally treated effluent resulted in the most negative effects, leading to the conclusion that all additional treatments in the present study created effluents with less negative impacts on the copepod populations. The ozone treatments with the low dose treatment in particular, resulted in the overall least negative effects. Moving bed biofilm reactor combined with ozone did not improve the quality of the effluent in the sense that slightly more negative effects on the population abundance were seen for this treatment technology compared to ozonation alone. The active carbon treatment had more negative effects than the ozone treatments, most of which could possibly be explained by removal of essential metal ions. The effluent which was treated with ultraviolet radiation+hydrogen peroxide resulted in few developmental and survival effects over time, but still showed negative effects on the population level. Matrix population modeling proved a useful tool for biologically characterizing and comparing the effluents. Basing the assessment either on the individual level data (development and survival over time or total reproductive output) or the population level data (lambda values and projected population abundances) would not have resulted in the same conclusions as combining both analyses. The juvenile development and survival over time allowed for closer monitoring of the important molting process, whereas the population modeling provided an integrated measure of potential effects at the population level. If the dilution of the effluent in the recipient is considered, the biological effects recorded in the present study were not of substantial significance for the copepod populations, regardless of treatment technology.