RESUMEN
Decoders optimized offline to reconstruct intended movements from neural recordings sometimes fail to achieve optimal performance online when they are used in closed-loop as part of an intracortical brain-computer interface (iBCI). This is because typical decoder calibration routines do not model the emergent interactions between the decoder, the user, and the task parameters (e.g. target size). Here, we investigated the feasibility of simulating online performance to better guide decoder parameter selection and design. Three participants in the BrainGate2 pilot clinical trial controlled a computer cursor using a linear velocity decoder under different gain (speed scaling) and temporal smoothing parameters and acquired targets with different radii and distances. We show that a user-specific iBCI feedback control model can predict how performance changes under these different decoder and task parameters in held-out data. We also used the model to optimize a nonlinear speed scaling function for the decoder. When used online with two participants, it increased the dynamic range of decoded speeds and decreased the time taken to acquire targets (compared to an optimized standard decoder). These results suggest that it is feasible to simulate iBCI performance accurately enough to be useful for quantitative decoder optimization and design.
Asunto(s)
Biorretroalimentación Psicológica , Interfaces Cerebro-Computador , Modelos Neurológicos , Algoritmos , Calibración , Humanos , Desempeño PsicomotorRESUMEN
OBJECTIVE: Brain-computer interfaces (BCIs) aim to help people with impaired movement ability by directly translating their movement intentions into command signals for assistive technologies. Despite large performance improvements over the last two decades, BCI systems still make errors that need to be corrected manually by the user. This decreases system performance and is also frustrating for the user. The deleterious effects of errors could be mitigated if the system automatically detected when the user perceives that an error was made and automatically intervened with a corrective action; thus, sparing users from having to make the correction themselves. Our previous preclinical work with monkeys demonstrated that task-outcome correlates exist in motor cortical spiking activity and can be utilized to improve BCI performance. Here, we asked if these signals also exist in the human hand area of motor cortex, and whether they can be decoded with high accuracy. METHODS: We analyzed posthoc the intracortical neural activity of two BrainGate2 clinical trial participants who were neurally controlling a computer cursor to perform a grid target selection task and a keyboard-typing task. RESULTS: Our key findings are that: 1) there exists a putative outcome error signal reflected in both the action potentials and local field potentials of the human hand area of motor cortex, and 2) target selection outcomes can be classified with high accuracy (70-85%) of errors successfully detected with minimal (0-3%) misclassifications of success trials, based on neural activity alone. SIGNIFICANCE: These offline results suggest that it will be possible to improve the performance of clinical intracortical BCIs by incorporating a real-time error detect-and-undo system alongside the decoding of movement intention.
Asunto(s)
Interfaces Cerebro-Computador , Electrodos Implantados , Corteza Motora/fisiología , Dispositivos de Autoayuda , Esclerosis Amiotrófica Lateral/rehabilitación , Electroencefalografía , Femenino , Mano/fisiología , Humanos , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador , Traumatismos de la Médula Espinal/rehabilitación , Análisis y Desempeño de TareasRESUMEN
General-purpose computers have become ubiquitous and important for everyday life, but they are difficult for people with paralysis to use. Specialized software and personalized input devices can improve access, but often provide only limited functionality. In this study, three research participants with tetraplegia who had multielectrode arrays implanted in motor cortex as part of the BrainGate2 clinical trial used an intracortical brain-computer interface (iBCI) to control an unmodified commercial tablet computer. Neural activity was decoded in real time as a point-and-click wireless Bluetooth mouse, allowing participants to use common and recreational applications (web browsing, email, chatting, playing music on a piano application, sending text messages, etc.). Two of the participants also used the iBCI to "chat" with each other in real time. This study demonstrates, for the first time, high-performance iBCI control of an unmodified, commercially available, general-purpose mobile computing device by people with tetraplegia.
Asunto(s)
Ondas Encefálicas , Interfaces Cerebro-Computador , Computadoras de Mano , Cuadriplejía , Programas Informáticos , Adulto , Electrodos , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
OBJECTIVE: Recent reports indicate that making better assumptions about the user's intended movement can improve the accuracy of decoder calibration for intracortical brain-computer interfaces. Several methods now exist for estimating user intent, including an optimal feedback control model, a piecewise-linear feedback control model, ReFIT, and other heuristics. Which of these methods yields the best decoding performance? METHODS: Using data from the BrainGate2 pilot clinical trial, we measured how a steady-state velocity Kalman filter decoder was affected by the choice of intention estimation method. We examined three separate components of the Kalman filter: dimensionality reduction, temporal smoothing, and output gain (speed scaling). RESULTS: The decoder's dimensionality reduction properties were largely unaffected by the intention estimation method. Decoded velocity vectors differed by <5% in terms of angular error and speed vs. target distance curves across methods. In contrast, the smoothing and gain properties of the decoder were greatly affected (> 50% difference in average values). Since the optimal gain and smoothing properties are task-specific (e.g. lower gains are better for smaller targets but worse for larger targets), no one method was better for all tasks. CONCLUSION: Our results show that, when gain and smoothing differences are accounted for, current intention estimation methods yield nearly equivalent decoders and that simple models of user intent, such as a position error vector (target position minus cursor position), perform comparably to more elaborate models. Our results also highlight that simple differences in gain and smoothing properties have a large effect on online performance and can confound decoder comparisons.
Asunto(s)
Interfaces Cerebro-Computador , Intención , Corteza Motora/fisiología , Procesamiento de Señales Asistido por Computador , Algoritmos , Calibración , Simulación por Computador , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Movimiento/fisiología , Cuadriplejía/rehabilitaciónRESUMEN
Brain-computer interfaces (BCIs) have the potential to restore communication for people with tetraplegia and anarthria by translating neural activity into control signals for assistive communication devices. While previous pre-clinical and clinical studies have demonstrated promising proofs-of-concept (Serruya et al., 2002; Simeral et al., 2011; Bacher et al., 2015; Nuyujukian et al., 2015; Aflalo et al., 2015; Gilja et al., 2015; Jarosiewicz et al., 2015; Wolpaw et al., 1998; Hwang et al., 2012; Spüler et al., 2012; Leuthardt et al., 2004; Taylor et al., 2002; Schalk et al., 2008; Moran, 2010; Brunner et al., 2011; Wang et al., 2013; Townsend and Platsko, 2016; Vansteensel et al., 2016; Nuyujukian et al., 2016; Carmena et al., 2003; Musallam et al., 2004; Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O'Doherty et al., 2011; Gilja et al., 2012), the performance of human clinical BCI systems is not yet high enough to support widespread adoption by people with physical limitations of speech. Here we report a high-performance intracortical BCI (iBCI) for communication, which was tested by three clinical trial participants with paralysis. The system leveraged advances in decoder design developed in prior pre-clinical and clinical studies (Gilja et al., 2015; Kao et al., 2016; Gilja et al., 2012). For all three participants, performance exceeded previous iBCIs (Bacher et al., 2015; Jarosiewicz et al., 2015) as measured by typing rate (by a factor of 1.4-4.2) and information throughput (by a factor of 2.2-4.0). This high level of performance demonstrates the potential utility of iBCIs as powerful assistive communication devices for people with limited motor function.Clinical Trial No: NCT00912041.
Asunto(s)
Interfaces Cerebro-Computador , Comunicación , Parálisis , Humanos , Resultado del TratamientoRESUMEN
OBJECTIVE: When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a 'feedback control policy'. A better understanding of these policies may inform the design of higher-performing neural decoders. APPROACH: We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users' feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. MAIN RESULTS: We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user's neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor's current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. SIGNIFICANCE: Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements.
Asunto(s)
Biorretroalimentación Psicológica/fisiología , Encéfalo/fisiología , Retroalimentación Fisiológica/fisiología , Imaginación/fisiología , Modelos Neurológicos , Movimiento/fisiología , Análisis y Desempeño de Tareas , Biorretroalimentación Psicológica/métodos , Simulación por Computador , Potenciales Evocados Motores/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos PilotoRESUMEN
OBJECTIVE: Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts' law: [Formula: see text] (where MT is movement time, D is target distance, R is target radius, and [Formula: see text] are parameters). Fitts' law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio [Formula: see text]) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to [Formula: see text]). APPROACH: Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts' law. MAIN RESULTS: We found that movement times were better described by the equation [Formula: see text], which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the [Formula: see text] ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user's motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder. SIGNIFICANCE: The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts' law-like relationship to iBCI movements may require non-linear decoding strategies.
Asunto(s)
Artefactos , Interfaces Cerebro-Computador , Electroencefalografía/métodos , Potenciales Evocados , Modelos Neurológicos , Movimiento , Desempeño Psicomotor , Simulación por Computador , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Relación Señal-RuidoRESUMEN
OBJECTIVE: One of the main goals of brain-machine interface (BMI) research is to restore function to people with paralysis. Currently, multiple BMI design features are being investigated, based on various input modalities (externally applied and surgically implantable sensors) and output modalities (e.g. control of computer systems, prosthetic arms, and functional electrical stimulation systems). While these technologies may eventually provide some level of benefit, they each carry associated burdens for end-users. We sought to assess the attitudes of people with paralysis toward using various technologies to achieve particular benefits, given the burdens currently associated with the use of each system. APPROACH: We designed and distributed a technology survey to determine the level of benefit necessary for people with tetraplegia due to spinal cord injury to consider using different technologies, given the burdens currently associated with them. The survey queried user preferences for 8 BMI technologies including electroencephalography, electrocorticography, and intracortical microelectrode arrays, as well as a commercially available eye tracking system for comparison. Participants used a 5-point scale to rate their likelihood to adopt these technologies for 13 potential control capabilities. MAIN RESULTS: Survey respondents were most likely to adopt BMI technology to restore some of their natural upper extremity function, including restoration of hand grasp and/or some degree of natural arm movement. High speed typing and control of a fast robot arm were also of interest to this population. Surgically implanted wireless technologies were twice as 'likely' to be adopted as their wired equivalents. SIGNIFICANCE: Assessing end-user preferences is an essential prerequisite to the design and implementation of any assistive technology. The results of this survey suggest that people with tetraplegia would adopt an unobtrusive, autonomous BMI system for both restoration of upper extremity function and control of external devices such as communication interfaces.
Asunto(s)
Equipos de Comunicación para Personas con Discapacidad/estadística & datos numéricos , Electroencefalografía/estadística & datos numéricos , Evaluación de Necesidades , Prioridad del Paciente/estadística & datos numéricos , Cuadriplejía/rehabilitación , Robótica/estadística & datos numéricos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Interfaces Cerebro-Computador , Equipos de Comunicación para Personas con Discapacidad/psicología , Electroencefalografía/psicología , Femenino , Encuestas de Atención de la Salud , Humanos , Masculino , Persona de Mediana Edad , Prioridad del Paciente/psicología , Cuadriplejía/epidemiología , Cuadriplejía/psicología , Tecnología , Estados Unidos/epidemiología , Adulto JovenRESUMEN
Neural prostheses have the potential to improve the quality of life of individuals with paralysis by directly mapping neural activity to limb- and computer-control signals. We translated a neural prosthetic system previously developed in animal model studies for use by two individuals with amyotrophic lateral sclerosis who had intracortical microelectrode arrays placed in motor cortex. Measured more than 1 year after implant, the neural cursor-control system showed the highest published performance achieved by a person to date, more than double that of previous pilot clinical trial participants.
Asunto(s)
Prótesis Neurales , Parálisis/terapia , Investigación Biomédica Traslacional , Humanos , Microelectrodos , Calidad de VidaRESUMEN
The prevailing view of motor cortex holds that motor cortical neural activity represents muscle or movement parameters. However, recent studies in non-human primates have shown that neural activity does not simply represent muscle or movement parameters; instead, its temporal structure is well-described by a dynamical system where activity during movement evolves lawfully from an initial pre-movement state. In this study, we analyze neuronal ensemble activity in motor cortex in two clinical trial participants diagnosed with Amyotrophic Lateral Sclerosis (ALS). We find that activity in human motor cortex has similar dynamical structure to that of non-human primates, indicating that human motor cortex contains a similar underlying dynamical system for movement generation.
Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Corteza Motora/fisiología , Movimiento , Vías Nerviosas/fisiología , Neuronas/fisiología , Humanos , Modelos NeurológicosRESUMEN
OBJECTIVE: Brain-machine interface systems translate recorded neural signals into command signals for assistive technology. In individuals with upper limb amputation or cervical spinal cord injury, the restoration of a useful hand grasp could significantly improve daily function. We sought to determine if electrocorticographic (ECoG) signals contain sufficient information to select among multiple hand postures for a prosthetic hand, orthotic, or functional electrical stimulation system. APPROACH: We recorded ECoG signals from subdural macro- and microelectrodes implanted in motor areas of three participants who were undergoing inpatient monitoring for diagnosis and treatment of intractable epilepsy. Participants performed five distinct isometric hand postures, as well as four distinct finger movements. Several control experiments were attempted in order to remove sensory information from the classification results. Online experiments were performed with two participants. MAIN RESULTS: Classification rates were 68%, 84% and 81% for correct identification of 5 isometric hand postures offline. Using 3 potential controls for removing sensory signals, error rates were approximately doubled on average (2.1×). A similar increase in errors (2.6×) was noted when the participant was asked to make simultaneous wrist movements along with the hand postures. In online experiments, fist versus rest was successfully classified on 97% of trials; the classification output drove a prosthetic hand. Online classification performance for a larger number of hand postures remained above chance, but substantially below offline performance. In addition, the long integration windows used would preclude the use of decoded signals for control of a BCI system. SIGNIFICANCE: These results suggest that ECoG is a plausible source of command signals for prosthetic grasp selection. Overall, avenues remain for improvement through better electrode designs and placement, better participant training, and characterization of non-stationarities such that ECoG could be a viable signal source for grasp control for amputees or individuals with paralysis.