Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Am Chem Soc ; 146(13): 9155-9162, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38511254

RESUMEN

The key parameters governing the mechanical stability of highly porous materials such as metal-organic frameworks (MOFs) are yet to be clearly understood. This study focuses on the role of the linker connectivity by investigating the mechanical stability of MIL-100(Cr), a mesoporous MOF with a hierarchical structure and a tritopic linker, and comparing it to MIL-101(Cr) having instead a ditopic linker. Using synchrotron X-ray diffraction and infrared spectroscopy, we investigate the high-pressure behavior of MIL-100(Cr) with both solid and fluid pressure transmitting media (PTM). In the case of a solid medium, MIL-100(Cr) undergoes amorphization at about 0.6 GPa, while silicone oil as a PTM delays amorphization until 12 GPa due to the fluid penetration into the pores. Both of these values are considerably higher than those of MIL-101(Cr). MIL-100(Cr) also exhibits a bulk modulus almost ten times larger than that of MIL-101(Cr). This set of results coherently proves the superior stability of MIL-100(Cr) under compression. We ascribe this to the higher connectivity of the organic linker in MIL-100(Cr), which enhances its interconnection between the metal nodes. These findings shed light on the importance of linker connectivity in the mechanical stability of MOFs, a relevant contribution to the quest for designing more robust MOFs.

2.
J Am Chem Soc ; 142(35): 15012-15019, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32786787

RESUMEN

The chromium terephthalate MIL-101 is a mesoporous metal-organic framework (MOF) with unprecedented adsorption capacities due to the presence of giant pores. The application of an external pressure can effectively modify the open structure of MOFs and its interaction with guest molecules. In this work, we study MIL-101 under pressure by synchrotron X-ray diffraction and infrared (IR) spectroscopy with several pressure transmitting media (PTM). Our experimental results clearly show that when a solid medium as NaCl is employed, an irreversible amorphization of the empty structure occurs at about 0.4 GPa. Using a fluid PTM, as Nujol or high-viscosity silicone oil, results in a slight lattice expansion and a strong modification of the peak frequency and shape of the MOF hydroxyl vibration below 0.1 GPa. Moreover, the framework stability is enhanced under pressure with the amorphization onset shifted to about 7 GPa. This coherent set of results points out the insertion of the fluid inside the MIL-101 pores. Above 7 GPa, concomitantly to the nucleation of the amorphous phase, we observe a peculiar medium-dependent lattice expansion. The behavior of the OH stretching vibrations under pressure is profoundly affected by the presence of the guest fluid, showing that OH bonds are sensitive vibrational probes of the host-guest interactions. The present study demonstrates that even a polydimethylsiloxane silicone oil, although highly viscous, can be effectively inserted into the MIL-101 pores at a pressure below 0.2 GPa. High pressure can thus promote the incorporation of large polymers in mesoporous MOFs.

3.
J Nanosci Nanotechnol ; 19(6): 3187-3196, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30744742

RESUMEN

Pt/UiO-66 nanocomposites with platinum target concentration of 3 wt.% were prepared by 3 preparation methods, characterized and tested in the CO2 methanation process. Choice of the microporous UiO-66 metal-organic framework (Zr6O4(OH)4 with 1,4-benzene-dicarboxylate ligand) as catalytic support was motivated by the CO2 chemisorption capacity (proven by CO2-TPD profiles), large specific surface area (1477 m²/g) which favors a high dispersion of metal nanoparticles and good thermal stability. The preparation methods for the Pt/UiO-66 nanocomposites are: (1) wetimpregnation followed by reduction in H2 at 200 °C for 2 h; (2) wet-impregnation followed by reduction with an aqueous solution of NaBH4; and (3) "double-solvent" method, followed by reduction with NaBH4. The UiO-66 based nanocomposites were characterized by N2 adsorption-desorption (BET method), XRD, and SEM/TEM. The Pt/UiO-66 catalyst prepared by method 3 was chosen for catalytic testing due to its highest surface area, smallest platinum nanoparticles (PtNPs) size, the localization of PtNPs both on the grain's internal and external surface and best thermal stability in the desired temperature range. Its capacity to adsorb and activate CO2 and H2 was evaluated in thermo-programmed desorption experiments (H2-TPD and CO2-TPD). Hydrogen is molecularly adsorbed, while CO2 is adsorbed both molecularly and dissociatively. The catalytic performance in the CO2 methanation process was evaluated by Temperature Programmed Reactions (TPRea, 2 °C/min, 30-350 °C), at atmospheric pressure. The best results were obtained at 350 °C, CO2:H2 molar ratio of 1:5.2 and GHSV ═ 1650 h-1. In these conditions CO2 conversion is almost 50% and CH4 selectivity is 36%, the rest of the converted CO2 being transformed in CO.

4.
J Nanosci Nanotechnol ; 10(4): 2527-30, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20355457

RESUMEN

A driving force for the growing interest in nanoassemblies is the use of nanoparticles linked to organic molecules. The goal of our research is to investigate the coupling of gold and silver nanoparticles (GNP and AgNP) with porphyrins molecules. We prepared water-soluble GNP and AgNP by reducing the noble metal complex salt with sodium citrate. The exchange of the initial ligand (citrate ions) with porphyrins formed hybrid nanostructures and change the electronic properties of GNP and AgNP. We highlighted the importance of the pH value to obtain the coupling of nanoparticles and porphyrins. We have shown that the absorption spectra of AgNP have a strong overlap with that of porphyrins. The effect of dye molecules on the plasmon properties of nanoparticles was demonstrated by UV-Vis, fluorescence and electrochemical spectroscopy (OTTLE cell). These new hybrid materials will be helpful for the design of light harvesting cells and sensors.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda