RESUMEN
Elite controllers are a heterogeneous group of people living with HIV who control viral replication without antiretroviral therapy. There is substantial evidence that at least some elite controllers are infected with replication-competent virus, thus they may serve as a model of a functional cure of HIV. The mechanisms responsible for virologic control have been actively studied. The most objective data support CD8+ T cell-based mechanisms of control, but other immune responses, mediated by antibodies and natural killer cells, may also play a role in controlling viral replication. In this article, we review the evidence for different mechanisms of immune control in these remarkable individuals. Expected final online publication date for the Annual Review of Immunology, Volume 42 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
RESUMEN
Antiretroviral therapy fails to cure HIV-1 infection because latent proviruses persist in resting CD4(+) T cells. T cell activation reverses latency, but <1% of proviruses are induced to release infectious virus after maximum in vitro activation. The noninduced proviruses are generally considered defective but have not been characterized. Analysis of 213 noninduced proviral clones from treated patients showed 88.3% with identifiable defects but 11.7% with intact genomes and normal long terminal repeat (LTR) function. Using direct sequencing and genome synthesis, we reconstructed full-length intact noninduced proviral clones and demonstrated growth kinetics comparable to reconstructed induced proviruses from the same patients. Noninduced proviruses have unmethylated promoters and are integrated into active transcription units. Thus, it cannot be excluded that they may become activated in vivo. The identification of replication-competent noninduced proviruses indicates that the size of the latent reservoir-and, hence, the barrier to cure-may be up to 60-fold greater than previously estimated.
Asunto(s)
Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/genética , Latencia del Virus , Secuencia de Bases , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Metilación de ADN , Duplicado del Terminal Largo de VIH , Activación de Linfocitos , Datos de Secuencia Molecular , Mutación , Filogenia , Provirus/genética , Alineación de SecuenciaRESUMEN
A stable latent reservoir for HIV-1 in resting CD4+ T cells is the principal barrier to a cure1-3. Curative strategies that target the reservoir are being tested4,5 and require accurate, scalable reservoir assays. The reservoir was defined with quantitative viral outgrowth assays for cells that release infectious virus after one round of T cell activation1. However, these quantitative outgrowth assays and newer assays for cells that produce viral RNA after activation6 may underestimate the reservoir size because one round of activation does not induce all proviruses7. Many studies rely on simple assays based on polymerase chain reaction to detect proviral DNA regardless of transcriptional status, but the clinical relevance of these assays is unclear, as the vast majority of proviruses are defective7-9. Here we describe a more accurate method of measuring the HIV-1 reservoir that separately quantifies intact and defective proviruses. We show that the dynamics of cells that carry intact and defective proviruses are different in vitro and in vivo. These findings have implications for targeting the intact proviruses that are a barrier to curing HIV infection.
Asunto(s)
Linfocitos T CD4-Positivos/virología , Portador Sano/virología , Virus Defectuosos/aislamiento & purificación , Infecciones por VIH/virología , VIH-1/aislamiento & purificación , Provirus/aislamiento & purificación , Latencia del Virus , Linfocitos T CD4-Positivos/citología , Portador Sano/terapia , Línea Celular , ADN Viral/análisis , ADN Viral/genética , Virus Defectuosos/genética , Virus Defectuosos/fisiología , Infecciones por VIH/terapia , VIH-1/genética , VIH-1/fisiología , Humanos , Activación de Linfocitos , Reacción en Cadena de la Polimerasa , Provirus/genética , Provirus/fisiologíaRESUMEN
Orthopoxvirus-specific T-cell responses were analyzed in 10 patients who had recovered from Mpox including 7 people with human immunodeficiency virus (PWH). Eight participants had detectable virus-specific T-cell responses, including a PWH who was not on antiretroviral therapy and a PWH on immunosuppressive therapy. These 2 participants had robust polyfunctional CD4+ T-cell responses to peptides from the 121L vaccinia virus (VACV) protein. T-cells from 4 of 5 HLA-A2-positive participants targeted at least 1 previously described HLA-A2-restricted VACV epitope, including an epitope targeted in 2 participants. These results advance our understanding of immunity in convalescent Mpox patients.
Asunto(s)
Mpox , Orthopoxvirus , Humanos , Antígeno HLA-A2 , Virus Vaccinia , Epítopos , Proteínas ViralesRESUMEN
Kidney transplant recipients (KTRs) develop decreased antibody titers to SARS-CoV-2 vaccination compared to healthy controls (HCs), but whether KTRs generate antibodies against key epitopes associated with neutralization is unknown. Plasma from 78 KTRs from a clinical trial of third doses of SARS-CoV-2 vaccines and 12 HCs underwent phage display immunoprecipitation and sequencing (PhIP-Seq) to map antibody responses against SARS-CoV-2. KTRs had lower antibody reactivity to SARS-CoV-2 than HCs, but KTRs and HCs recognized similar epitopes associated with neutralization. Thus, epitope gaps in antibody breadth of KTRs are unlikely responsible for decreased efficacy of SARS-CoV-2 vaccines in this immunosuppressed population.
RESUMEN
Antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination are reduced in solid organ transplant recipients (SOTRs). We report that increased levels of preexisting antibodies to seasonal coronaviruses are associated with decreased antibody response to SARS-CoV-2 vaccination in SOTRs, supporting that antigenic imprinting modulates vaccine responses in SOTRs.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Trasplante de Órganos , Vacunas , Humanos , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Trasplante de Órganos/efectos adversos , SARS-CoV-2 , Estaciones del Año , Receptores de Trasplantes , VacunaciónRESUMEN
A scalable approach for quantifying intact HIV-1 proviruses is critical for basic research and clinical trials directed at HIV-1 cure. The intact proviral DNA assay (IPDA) is a novel approach to characterizing the HIV-1 reservoir, focusing on the genetic integrity of individual proviruses independent of transcriptional status. It uses multiplex digital droplet PCR to distinguish and separately quantify intact proviruses, defined by a lack of overt fatal defects such as large deletions and APOBEC3G-mediated hypermutation, from the majority of proviruses that have such defects. This distinction is important because only intact proviruses cause viral rebound on ART interruption. To evaluate IPDA performance and provide benchmark data to support its implementation, we analyzed peripheral blood samples from 400 HIV-1+ adults on ART from several diverse cohorts, representing a robust sample of treated HIV-1 infection in the United States. We provide direct quantitative evidence that defective proviruses greatly outnumber intact proviruses (by >12.5 fold). However, intact proviruses are present at substantially higher frequencies (median, 54/106 CD4+ T cells) than proviruses detected by the quantitative viral outgrowth assay, which requires induction and in vitro growth (â¼1/106 CD4+ T cells). IPDA amplicon signal issues resulting from sequence polymorphisms were observed in only 6.3% of individuals and were readily apparent and easily distinguished from low proviral frequency, an advantage of the IPDA over standard PCR assays which generate false-negative results in such situations. The large IPDA dataset provided here gives the clearest quantitative picture to date of HIV-1 proviral persistence on ART.
Asunto(s)
ADN Viral/sangre , Infecciones por VIH , Provirus/genética , Latencia del Virus/genética , Adulto , Femenino , Infecciones por VIH/sangre , Infecciones por VIH/epidemiología , Infecciones por VIH/virología , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa/métodosRESUMEN
Little is known about the decay kinetics of coronavirus disease 2019 vaccine-elicited severe acute respiratory syndrome coronavirus 2-specific T cells. In this study we show a modest decline in the frequency of these T cells at 6 months and demonstrate robust expansion in response to antigen and recognition of spike peptides from the Delta variant.
Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Linfocitos T , Vacunas Sintéticas , Vacunas de ARNmRESUMEN
Previous studies have shown that certain vaccines induce suboptimal responses in people living with human immunodeficiency virus (HIV, PLWH). However, responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have not been fully characterized in these patients. Here we show that the BNT162b2 vaccine induces robust immune responses comparable to responses in healthy donors.
Asunto(s)
COVID-19 , Infecciones por VIH , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , VIH , Humanos , Inmunidad Celular , Inmunidad Humoral , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNmRESUMEN
We compared antibody and T-cell responses against the severe acute respiratory syndrome coronavirus 2 vaccine strain spike protein to responses against the Omicron variant in 15 messenger RNA vaccine recipients. While these individuals had significantly lower levels of antibodies that inhibited Omicron spike protein binding to ACE2, there was no difference in T-cell responses.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , ARN Mensajero/genética , Linfocitos T , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Vacunas de ARNmRESUMEN
Vaccine-induced SARS-CoV-2 antibody responses are attenuated in solid organ transplant recipients (SOTRs) and breakthrough infections are more common. Additional SARS-CoV-2 vaccine doses increase anti-spike IgG in some SOTRs, but it is uncertain whether neutralization of variants of concern (VOCs) is enhanced. We tested 47 SOTRs for clinical and research anti-spike IgG, pseudoneutralization (ACE2 blocking), and live-virus neutralization (nAb) against VOCs before and after a third SARS-CoV-2 vaccine dose (70% mRNA, 30% Ad26.COV2.S) with comparison to 15 healthy controls after two mRNA vaccine doses. We used correlation analysis to compare anti-spike IgG assays and focused on thresholds associated with neutralization. A third SARS-CoV-2 vaccine dose increased median total anti-spike (1.6-fold), pseudoneutralization against VOCs (2.5-fold vs. Delta), and neutralizing antibodies (1.4-fold against Delta). However, neutralization activity was significantly lower than healthy controls (p < .001); 32% of SOTRs had zero detectable nAb against Delta after third vaccination compared to 100% for controls. Correlation with nAb was seen at anti-spike IgG >4 Log10 (AU/ml) on the Euroimmun ELISA and >4 Log10 (AU/ml) on the MSD research assay. These findings highlight benefits of a third vaccine dose for some SOTRs and the need for alternative strategies to improve protection in a significant subset of this population.
Asunto(s)
COVID-19 , Trasplante de Órganos , Ad26COVS1 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Trasplante de Órganos/efectos adversos , SARS-CoV-2 , Receptores de Trasplantes , Vacunas Sintéticas , Vacunas de ARNmRESUMEN
HIV-1 infection persists in humans despite expression of antiviral type 1 interferons (IFN). Even exogenous administration of IFNα only marginally reduces HIV-1 abundance, raising the hypothesis that people living with HIV-1 (PLWH) are refractory to type 1 IFN. We demonstrated type 1 IFN refractoriness in CD4+ and CD8+ T cells isolated from HIV-1 infected persons by detecting diminished STAT1 phosphorylation (pSTAT1) and interferon-stimulated gene (ISG) induction upon type 1 IFN stimulation compared to healthy controls. Importantly, HIV-1 infected people who were virologically suppressed with antiretrovirals also showed type 1 IFN refractoriness. We found that USP18 levels were elevated in people with refractory pSTAT1 and ISG induction and confirmed this finding ex vivo in CD4+ T cells from another cohort of HIV-HCV coinfected persons who received exogenous pegylated interferon-α2b in a clinical trial. We used a cell culture model to recapitulate type 1 IFN refractoriness in uninfected CD4+ T cells that were conditioned with media from HIV-1 inoculated PBMCs, inhibiting de novo infection with antiretroviral agents. In this model, RNA interference against USP18 partly restored type 1 IFN responses in CD4+ T cells. We found evidence of type 1 IFN refractoriness in PLWH irrespective of virologic suppression that was associated with upregulated USP18, a process that might be therapeutically targeted to improve endogenous control of infection.ImportancePeople living with HIV-1 (PLWH) have elevated constitutive expression of type 1 interferons (IFN). However, it is unclear whether this impacts downstream innate immune responses. We identified refractory responses to type 1 IFN stimulation in T cells from PLWH, independent of antiretroviral treatment. Type 1 IFN refractoriness was linked to elevated USP18 levels in the same cells. Moreover, we found that USP18 levels predicted the anti-HIV-1 effect of type 1 IFN-based therapy on PLWH. In vitro, we demonstrated that refractory type 1 IFN responses were transferrable to HIV-1 uninfected target CD4+ T cells, and this phenomenon was mediated by type 1 IFN from HIV-1 infected cells. Type 1 IFN responses were partially restored by USP18 knockdown. Our findings illuminate a new mechanism by which HIV-1 contributes to innate immune dysfunction in PLWH, through the continuous production of type 1 IFN that induces a refractory state of responsiveness.
RESUMEN
Highly active antiretroviral therapy (HAART) suppresses HIV-1 replication but cannot eliminate the virus because HIV-1 establishes latent infection. Interruption of HAART leads to a rapid rebound of viremia, so life-long treatment is required. Efforts to purge the latent reservoir have focused on reactivating latent proviruses without inducing global T cell activation. However, the killing of the infected cells after virus reactivation, which is essential for elimination of the reservoir, has not been assessed. Here we show that after reversal of latency in an in vitro model, infected resting CD4(+) T cells survived despite viral cytopathic effects, even in the presence of autologous cytolytic T lymphocytes (CTLs) from most patients on HAART. Antigen-specific stimulation of patient CTLs led to efficient killing of infected cells. These results demonstrate that stimulating HIV-1-specific CTLs prior to reactivating latent HIV-1 may be essential for successful eradication efforts and should be considered in future clinical trials.
Asunto(s)
VIH-1/inmunología , Linfocitos T Citotóxicos/inmunología , Terapia Antirretroviral Altamente Activa , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Técnicas de Cocultivo , Efecto Citopatogénico Viral , Citotoxicidad Inmunológica , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/patogenicidad , VIH-1/fisiología , Humanos , Activación de Linfocitos , Provirus/efectos de los fármacos , Provirus/inmunología , Provirus/fisiología , Latencia del Virus/inmunología , Replicación ViralRESUMEN
Current shock-and-kill strategies for the eradication of the HIV-1 reservoir have resulted in blips of viremia but not in a decrease in the size of the latent reservoir in patients on suppressive antiretroviral therapy (ART). This discrepancy could potentially be explained by an inability of the immune system to kill HIV-1-infected cells following the reversal of latency. Furthermore, some studies have suggested that certain latency-reversing agents (LRAs) may inhibit CD8+ T cell and natural killer (NK) cell responses. In this study, we tested the hypothesis that alpha interferon (IFN-α) could improve the function of NK cells from chronic progressors (CP) on ART. We show here that IFN-α treatment enhanced cytokine secretion, polyfunctionality, degranulation, and the cytotoxic potential of NK cells from healthy donors (HD) and CP. We also show that this cytokine enhanced the viral suppressive capacity of NK cells from HD and elite controllers or suppressors. Furthermore, IFN-α enhanced global CP CD8+ T cell cytokine responses and the suppressive capacity of ES CD8+ T cells. Our data suggest that IFN-α treatment may potentially be used as an immunomodulatory agent in HIV-1 cure strategies.IMPORTANCE Data suggest that HIV+ individuals unable to control infection fail to do so due to impaired cytokine production and/cytotoxic effector cell function. Consequently, the success of cure agendas such as the shock-and-kill strategy will probably depend on enhancing patient effector cell function. In this regard, NK cells are of particular interest since they complement the function of CD8+ T cells. Here, we demonstrate the ability of short-course alpha interferon (IFN-α) treatments to effectively enhance such effector functions in chronic progressor NK cells without inhibiting their general CD8+ T cell function. These results point to the possibility of exploring such short-course IFN-α treatments for the enhancement of effector cell function in HIV+ patients in future cure strategies.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Interferón-alfa/farmacología , Células Asesinas Naturales/inmunología , Viremia/inmunología , Latencia del Virus/inmunología , Antivirales/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/virología , Estudios de Casos y Controles , Degranulación de la Célula/efectos de los fármacos , Citocinas/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Seropositividad para VIH , VIH-1/efectos de los fármacos , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/virología , Activación de Linfocitos , Viremia/tratamiento farmacológico , Viremia/virología , Latencia del Virus/efectos de los fármacosRESUMEN
Latently infected resting memory CD4+ T cells represent a major barrier to HIV-1 eradication. Studies have shown that it will not be possible to cure HIV-1 infection unless these cells are eliminated. Latently infected cells probably do not express viral antigens and thus may not be susceptible to the HIV-1 specific immune response, nevertheless the size and composition of the reservoir is influenced by the immune system. In this chapter, we review the different components of the HIV-1 specific immune response and discuss how the immune system can be harnessed to eradicate the virus.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , Latencia del Virus/inmunología , HumanosAsunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Vacunas CombinadasRESUMEN
A 48-year-old woman was infected with a vpr-defective human immunodeficiency virus (HIV)-1 molecular clone. Seroconversion was markedly delayed, and without treatment she had durably suppressed viremia and normal T-cell levels. Neutralizing antibody and CD8+ T-cell immune responses against HIV-1 were unremarkable. Viral sequences confirmed the source but evolved defective nef, suggesting an unknown mechanistic link to vpr. There were subtle qualitative defects in T and B cells. To our knowledge, this is the only case of human infection with a characterized defective HIV-1 molecular clone, which furthermore recapitulated live-attenuated vaccination in macaque models of HIV-1 vaccine research.
Asunto(s)
Vacunas contra el SIDA/inmunología , Productos del Gen vpr/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Vacunas Atenuadas/inmunología , Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Clonación Molecular , Femenino , Humanos , Persona de Mediana Edad , Vacunación/métodosRESUMEN
BACKGROUND: It is unknown if extremely early initiation of antiretroviral therapy (ART) may lead to long-term ART-free HIV remission or cure. As a result, we studied 2 individuals recruited from a pre-exposure prophylaxis (PrEP) program who started prophylactic ART an estimated 10 days (Participant A; 54-year-old male) and 12 days (Participant B; 31-year-old male) after infection with peak plasma HIV RNA of 220 copies/mL and 3,343 copies/mL, respectively. Extensive testing of blood and tissue for HIV persistence was performed, and PrEP Participant A underwent analytical treatment interruption (ATI) following 32 weeks of continuous ART. METHODS AND FINDINGS: Colorectal and lymph node tissues, bone marrow, cerebral spinal fluid (CSF), plasma, and very large numbers of peripheral blood mononuclear cells (PBMCs) were obtained longitudinally from both participants and were studied for HIV persistence in several laboratories using molecular and culture-based detection methods, including a murine viral outgrowth assay (mVOA). Both participants initiated PrEP with tenofovir/emtricitabine during very early Fiebig stage I (detectable plasma HIV-1 RNA, antibody negative) followed by 4-drug ART intensification. Following peak viral loads, both participants experienced full suppression of HIV-1 plasma viremia. Over the following 2 years, no further HIV could be detected in blood or tissue from PrEP Participant A despite extensive sampling from ileum, rectum, lymph nodes, bone marrow, CSF, circulating CD4+ T cell subsets, and plasma. No HIV was detected from tissues obtained from PrEP Participant B, but low-level HIV RNA or DNA was intermittently detected from various CD4+ T cell subsets. Over 500 million CD4+ T cells were assayed from both participants in a humanized mouse outgrowth assay. Three of 8 mice infused with CD4+ T cells from PrEP Participant B developed viremia (50 million input cells/surviving mouse), but only 1 of 10 mice infused with CD4+ T cells from PrEP Participant A (53 million input cells/mouse) experienced very low level viremia (201 copies/mL); sequence confirmation was unsuccessful. PrEP Participant A stopped ART and remained aviremic for 7.4 months, rebounding with HIV RNA of 36 copies/mL that rose to 59,805 copies/mL 6 days later. ART was restarted promptly. Rebound plasma HIV sequences were identical to those obtained during acute infection by single-genome sequencing. Mathematical modeling predicted that the latent reservoir size was approximately 200 cells prior to ATI and that only around 1% of individuals with a similar HIV burden may achieve lifelong ART-free remission. Furthermore, we observed that lymphocytes expressing the tumor marker CD30 increased in frequency weeks to months prior to detectable HIV-1 RNA in plasma. This study was limited by the small sample size, which was a result of the rarity of individuals presenting during hyperacute infection. CONCLUSIONS: We report HIV relapse despite initiation of ART at one of the earliest stages of acute HIV infection possible. Near complete or complete loss of detectable HIV in blood and tissues did not lead to indefinite ART-free HIV remission. However, the small numbers of latently infected cells in individuals treated during hyperacute infection may be associated with prolonged ART-free remission.