Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Oecologia ; 173(4): 1397-409, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23828219

RESUMEN

The Enemy Release (ER) hypothesis predicts an increase in the plant invasive capacity after being released from their associated herbivores or pathogens in their area of origin. Despite the large number of studies on biological invasions addressing this hypothesis, tests evaluating changes in herbivory on native and introduced populations and their effects on plant reproductive potential at a biogeographical level are relatively rare. Here, we tested the ER hypothesis on the South African species Senecio pterophorus (Asteraceae), which is native to the Eastern Cape, has expanded into the Western Cape, and was introduced into Australia (>70-100 years ago) and Europe (>30 years ago). Insect seed predation was evaluated to determine whether plants in the introduced areas were released from herbivores compared to plants from the native range. In South Africa, 25 % of the seedheads of sampled plants were damaged. Plants from the introduced populations suffered lower seed predation compared to those from the native populations, as expected under the ER hypothesis, and this release was more pronounced in the region with the most recent introduction (Europe 0.2 % vs. Australia 15 %). The insect communities feeding on S. pterophorus in Australia and Europe differed from those found in South Africa, suggesting that the plants were released from their associated fauna after invasion and later established new associations with local herbivore communities in the novel habitats. Our study is the first to provide strong evidence of enemy release in a biogeographical survey across the entire known distribution of a species.


Asunto(s)
Herbivoria , Insectos , Especies Introducidas , Semillas , Senecio/crecimiento & desarrollo , Animales , Australia , Ecosistema , Europa (Continente) , Sudáfrica
2.
J Econ Entomol ; 114(2): 784-793, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33480425

RESUMEN

Conservation biological control could be an alternative to insecticides for the management of the aphid Myzus persicae (Sulzer). To develop sustainable strategies for M. persicae control in peach orchards in the Mediterranean, a 2-yr field experiment was conducted to identify the key predators of the aphid; to determine whether the proximity of insectary plants boost natural enemies of M. persicae in comparison to the resident vegetation; and whether selected insectary plants enhance natural enemy populations in the margins of peach orchards. Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae) and Episyrphus balteatus De Geer (Diptera: Syrphidae) were the most abundant predators found among sentinel aphid colonies, accounting for 57% and 26%, respectively. Samplings during 2015 yielded twice as many hoverflies in M. persicae sentinel plants close to the insectary plants as those close to the resident vegetation. The abundance of other natural enemies in sentinel plants, depending on their proximity to the insectary plants, was not significantly different in either of the 2 yr. Hoverflies hovered more often over the insectary plants than over the resident vegetation and landed significantly more often on Lobularia maritima (L.) Desv., Moricandia arvensis (L.) DC., and Sinapis alba L. (Brassicales: Brassicaceae) than on Achillea millefollium L. (Asterales: Compositae). Parasitoids were significantly more abundant in L. maritima and A. millefollium. The vicinity of selected insectary plants to peach orchards could improve the presence of hoverflies, which might benefit the biological control of M. persicae.


Asunto(s)
Áfidos , Brassicaceae , Dípteros , Prunus persica , Animales , Control Biológico de Vectores
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda