Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Rev Lett ; 132(20): 206101, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829064

RESUMEN

The dielectric response of liquids reflects both reorientation of single molecular dipoles and collective modes, i.e., dipolar cross-correlations. A recent theory predicts the latter to produce an additional slow peak in the dielectric loss spectrum. Following this idea we argue that in supercooled liquids the high-frequency power law exponent of the dielectric loss ß should be correlated with the degree of dipolar order, i.e., the Kirkwood correlation factor g_{K}. This notion is confirmed for 25 supercooled liquids. While our findings support recent theoretical work the results are shown to violate the earlier Kivelson-Madden theory.

2.
J Chem Phys ; 161(3)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39012811

RESUMEN

Room temperature ionic liquids (RTILs) are molten salts consisting entirely of ions and have over the past decades gained increased interest due to their high potential in applications. These structurally complex systems often display multiple relaxation modes in the response functions at lower frequencies, hinting to complex underlying mechanisms. While the existence of these multimodal spectra in the shear mechanical, dielectric, and light scattering response of RTILs has been confirmed multiple times, controversy still surrounds the origin. This paper, therefore, aims to provide additional insights into the multimodal spectra seen in RTILs by presenting new shear mechanical results on seven different RTILs: Pyr1n-TFSI with n = 4, 6, and 8; Pyr18-TFSI mixed with Li-TFSI in two high concentrations; and Cn-mim-BF4 with n = 3 and 8. Dynamic depolarized light scattering was also measured on one of the Pyr18-TFSI Li-salt mixtures. These specific cases were analyzed in detail and put into a bigger perspective together with an overview of the literature. Recent literature offers two specific explanations for the origin of the multimodal shear mechanical spectra: (1) cation-anion time scale separation or (2) combined cation-anion relaxation in addition to a dynamic signal from mesoscale aggregates at lower frequencies. However, neither of these two pictures can consistently explain all the results on different ionic liquids. Instead, we conclude that the origin of the multimodal spectrum is system specific. This underlines the complexity of this class of liquids and shows that great care must be taken when making general conclusions based on specific cases.

3.
Soft Matter ; 19(7): 1418-1428, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36723269

RESUMEN

Ionogels are gels containing ions, often an ionic liquid (IL), and a gelling agent. They are promising candidates for applications including batteries, photovoltaics or fuel cells due to their chemical stability and high ionic conductivity. In this work we report on a thermo-irreversible ionic gel prepared from a mixture of the ionic liquid 1-butyl-3-methylimidazolium ([BMIM]) dicyanamide ([DCA]), water and gelatin, which combines the advantages of an ionic liquid with the low cost of gelatin. We use (i) dielectric spectroscopy to monitor the ion transport, (ii) dynamic light scattering techniques to access the reorientational motions of the ions, as well as fluctuations of the gel matrix, and (iii) rheology to determine the shear response from above room temperature down to the glass transition. In this way, we are able to connect the microscopic ion dynamics with the meso- and macroscopic behavior of the gelatin matrix. We show, by comparing our results to those for a IL-water mixture from a previous study, that although some weak additional slow relaxation modes are present in the gel, the overall ion dynamics is hardly changed by the presence of gelatin. The macroscopic mechanical response, as probed by rheology, is however dominated by the gel matrix. This behaviour can be highly useful e.g. in battery gel electrolytes which prevent electrolyte leakage and combine mechanical rigidity and flexibility.

4.
Phys Chem Chem Phys ; 25(24): 16380-16388, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37292034

RESUMEN

The shape of the structural relaxation peak in the susceptibility spectra of liquids is of great interest, as it promises to provide information about the distribution of molecular mobilities and dynamic heterogeneity. However, recent studies suggest a generic shape of this peak near the glass transition temperature irrespective of the liquid under investigation, which somehow reduces the information contained in the peak shape. By contrast, at higher temperatures, say, around the melting point, the situation is different and the peak shape varies strongly between different liquids. In this study, we investigate molecules with a ring-tail structure and address the question how intramolecular dynamics influences the peak shape at these temperatures. Using depolarized light scattering and dielectric spectroscopy, we observe a bimodal relaxation, which we attribute to the fact that the reorientation of the ring group to some extent decouples from the rest of the molecule. This shows that the relaxation spectra are sensitive to details of the molecular motions at high temperatures, whereas in the supercooled state this microscopic information seems to give way to a generic shape, probably due to the onset of cooperativity which extends across different intramolecular moieties.

5.
J Chem Phys ; 159(5)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37526166

RESUMEN

We investigate the reorientation dynamics of four octanol isomers with very different characteristics regarding the formation of hydrogen-bonded structures by means of photon-correlation spectroscopy (PCS) and broadband dielectric spectroscopy. PCS is largely insensitive to orientational cross-correlations and straightforwardly probes the α-process dynamics, thus allowing us to disentangle the complex dielectric relaxation spectra. The analysis reveals an additional dielectric relaxation contribution on time scales between the structural α-process and the Debye process. In line with nuclear magnetic resonance results from the literature and recent findings from rheology experiments, we attribute this intermediate contribution to the dielectric signature of the O-H bond reorientation. Due to being incorporated into hydrogen-bonded suprastructures, the O-H bond dynamically decouples from the rest of the molecule. The relative relaxation strength of the resulting intermediate contribution depends on the respective position of the hydroxy group within the molecule and seems to vanish at sufficiently high temperatures, i.e., exactly when the overall tendency to form hydrogen bonded structures decreases. Furthermore, the fact that different octanol isomers share the same dipole density allows us to perform an in-depth analysis of how dipolar cross-correlations appear in dielectric loss spectra. We find that dipolar cross-correlations are not solely manifested by the presence of the slow Debye process but also scale the relaxation strength of the self-correlation contribution depending on the Kirkwood factor.

6.
Phys Chem Chem Phys ; 24(30): 18272-18280, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35880532

RESUMEN

Using depolarized light scattering, we have recently shown that structural relaxation in a broad range of supercooled liquids follows, to good approximation, a generic line shape with high-frequency power law ω-1/2. We now continue this study by investigating a systematic series of polyalcohols (PAs), frequently used as model-systems in glass-science, i.a., because the width of their respective dielectric loss spectra varies strongly along the series. Our results reveal that the microscopic origin of the observed relaxation behavior varies significantly between different PAs: while short-chained PAs like glycerol rotate as more or less rigid entities and their light scattering spectra follow the generic shape, long-chained PAs like sorbitol display pronounced intramolecular dynamic contributions on the time scale of structural relaxation, leading to systematic deviations from the generic shape. Based on these findings we discuss an important limitation for observing the generic shape in a supercooled liquid: the dynamics that is probed needs to reflect the intermolecular dynamic heterogeneity, and must not be superimposed by effects of intramolecular dynamic heterogeneity.


Asunto(s)
Vidrio , Sorbitol , Vidrio/química , Glicerol/química , Sorbitol/química , Temperatura
7.
J Chem Phys ; 157(24): 244501, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36586992

RESUMEN

The intensity of light scattered by liquids has been studied for over a century since the valuable microscopic information about the molecules can be obtained, such as the anisotropy of the molecular polarizability tensor or preferred orientations of neighboring molecules. However, in modern dynamic light scattering experiments, the scattering intensity is usually disregarded, unlike in dielectric spectroscopy, which can be considered as a complementary experimental method, where the dielectric strength is routinely evaluated. The reason lies partly on the fact that the exact form of the equations relating the macroscopically measured light scattering intensity to the microscopic properties of the molecules is debated in the literature. Therefore, as a first step, we compare anisotropy parameters from the literature, calculated from light scattering intensities using different equations, with quantum chemical calculations for over 150 medium-sized molecules. This allows us to identify a consistent form of equations. In a second part, we turn to the depolarized light scattering spectra of 13 van der Waals liquids and some mixtures thereof, recorded with a combination of Tandem-Fabry-Perót and Raman spectroscopies, giving direct access to the reorientational dynamics of the molecules. We discuss how the strength of the structural α-relaxation is connected to the anisotropy parameter, what implication this has for the shape of the α-relaxation, how the components of a mixture-also for the case of ionic liquids-can be identified in this way, and how orientational correlation parameters can be extracted. Additionally, we point out for the example of n-alkanes that for highly flexible molecules, the reorientational motion might not be the decisive source of the depolarized scattered light. We also show that light scattering might serve as a sensitive tool to check the accuracy of a conformer ensemble obtained by quantum chemical calculations.

8.
Phys Chem Chem Phys ; 23(26): 14260-14275, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34159979

RESUMEN

Molecular dynamics of ionic liquids in an electric field can be decomposed into contributions from translational motions of ions, rotational motions of permanent dipoles and - in the case of ions equipped with long alkyl-chains - motions of ionic aggregates. The discrimination of these contributions in the dielectric spectrum is quite involved, resulting in numerous controversies in the literature. Here, we use dielectric spectroscopy at ambient and elevated pressures of up to 550 MPa to monitor the changes of the observed processes in five supercooled ionic liquids with octyl-chains independent of pressure and temperature. In most of the ionic liquids under investigation two dynamical processes are observed, one of them is identified as the ion hopping process, which we describe by the MIGRATION model. It turns out that this process is closely connected to the glass transition step as measured by differential scanning calorimetry. Concerning the second process, we rule out motions of aggregated ions to be its origin by comparison of our results with X-ray scattering literature data at elevated pressure. Instead, we tentatively ascribe it to dipolar reorientations and show that the dielectric strength of this slow process decreases as a function of increasing relaxation time, i.e. for decreasing temperatures and increasing pressures. We compare this behavior with literature data of other ion conducting systems and discuss its microscopic origin.

9.
Phys Chem Chem Phys ; 23(28): 15020-15029, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34190269

RESUMEN

Characterizing the segmental dynamics of proteins, and intrinsically disordered proteins in particular, is a challenge in biophysics. In this study, by combining data from broadband dielectric spectroscopy (BDS) and both depolarized (DDLS) and polarized (PDLS) dynamic light scattering, we were able to determine the dynamics of a small peptide [ε-poly(lysine)] in water solutions in two different conformations (pure ß-sheet at pH = 10 and a more disordered conformation at pH = 7). We found that the segmental (α-) relaxation, as probed by DDLS, is faster in the disordered state than in the folded conformation. The water dynamics, as detected by BDS, is also faster in the disordered state. In addition, the combination of BDS and DDLS results allows us to confirm the molecular origin of water-related processes observed by BDS. Finally, we discuss the origin of two slow processes (A and B processes) detected by DDLS and PDLS in both conformations and usually observed in other types of water solutions. For fully homogeneous ε-PLL solutions at pH = 10, the A-DLS process is assigned to the diffusion of individual ß-sheets. The combination of both techniques opens a route for understanding the dynamics of peptides and other biological solutions.


Asunto(s)
Péptidos/química , Espectroscopía Dieléctrica , Dispersión Dinámica de Luz , Campos Electromagnéticos , Concentración de Iones de Hidrógeno , Proteínas Intrínsecamente Desordenadas/química , Luz , Modelos Químicos , Conformación Proteica/efectos de los fármacos , Temperatura , Agua
10.
Phys Chem Chem Phys ; 23(31): 16537-16541, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34312639

RESUMEN

Glass-forming liquids are well known to have significant dynamic heterogeneities, leading to spatially grossly varying elastic properties throughout the system. In this paper, we compare the local elastic response of supercooled 1-propanol monitored by triplet state solvation dynamics to the macroscopic dynamic shear modulus measured by a piezo-electric gauge. The time-dependent responses are found to be identical, which means that the dynamic macroscopic shear modulus provides a good measure of the average local elastic properties. Since the macroscopic shear modulus of a dynamically inhomogeneous system in general is not just the average of the local moduli, there was no reason to expect such a result. This surprising finding not only provides constraints for models of dynamical heterogeneities in glass-forming liquids, but also allows for a fairly straightforward check on elastic models for glassy dynamics.

11.
Phys Chem Chem Phys ; 23(1): 683-693, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33336668

RESUMEN

Triplet state solvation dynamics (TSD) is a truly local measurement technique, where a dye molecule is dissolved as a probe at low concentration in a solvent. Depending on the dye molecule, local information on mechanical or dielectric solvation can be obtained. So far, this method has mainly been used to investigate topics such as fundamentals of glassy dynamics and confinement effects. Based on the procedure presented in [P. Weigl et al., Z. Phys. Chem., 2018, 232, 1017-1039] in the present contribution two new TSD probes, namely indole and its derivative cbz-tryptophan, are identified and characterized in detail. In particular, their longer phosphorescence lifetime allows for a significant extension of the timescale of local mechanical and dipolar solvation measurements. In combination with previously used dyes a measurement window of up to five orders of magnitude in time can be covered. Furthermore, we show that in cbz-tryptophan the indole unit is the phosphorescence center, while the rest of the molecule only slightly contributes to the solvation response function. The detailed understanding of these two new TSD probes presented in this work, will allow in depth investigations of solvation and the corresponding dynamics also for biologically relevant systems in the future.

12.
J Chem Phys ; 155(17): 174501, 2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34742203

RESUMEN

Nanoscale water clusters in an ionic liquid matrix, also called "water pockets," were previously found in some mixtures of water with ionic liquids containing hydrophilic anions. However, in these systems, at least partial crystallization occurs upon supercooling. In this work, we show for mixtures of 1-butyl-3-methylimidazolium dicyanamide with water that none of the components crystallizes up to a water content of 72 mol. %. The dynamics of the ionic liquid matrix is monitored from above room temperature down to the glass transition by combining depolarized dynamic light scattering with broadband dielectric and nuclear magnetic resonance spectroscopy, revealing that the matrix behaves like a common glass former and stays amorphous in the whole temperature range. Moreover, we demonstrate by a combination of Raman spectroscopy, small angle neutron scattering, and molecular dynamics simulation that, indeed, nanoscale water clusters exist in this mixture.

13.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948085

RESUMEN

Photoluminescence is known to have huge potential for applications in studying biological systems. In that respect, phosphorescent dye molecules open the possibility to study the local slow solvent dynamics close to hard and soft surfaces and interfaces using the triplet state (TSD: triplet state solvation dynamics). However, for that purpose, probe molecules with efficient phosphorescence features are required with a fixed location on the surface. In this article, a potential TSD probe is presented in the form of a nanocomposite: we synthesize spherical silica particles with 2-naphthalene methanol molecules attached to the surface with a predefined surface density. The synthesis procedure is described in detail, and the obtained materials are characterized employing transmission electron microscopy imaging, Raman, and X-ray photoelectron spectroscopy. Finally, TSD experiments are carried out in order to confirm the phosphorescence properties of the obtained materials and the route to develop phosphorescent sensors at silica surfaces based on the presented results is discussed.


Asunto(s)
Sustancias Luminiscentes , Nanocompuestos/química , Naftalenos , Dióxido de Silicio/química
14.
Phys Chem Chem Phys ; 22(44): 25631-25637, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33150891

RESUMEN

Two glass-transitions have been observed in some miscible molecular mixtures with notable differences in geometry or chemistry of constituents. The explanation of the phenomena has been puzzling with diverse structural models. Here, we present detailed studies on two glass-transition mixtures composed of tripropyl phosphate (TPP) and polystyrene (PS) by using calorimetric and dielectric measurements. We found that ageing between the two transitions always generates endothermic peaks at temperatures ∼4 K higher than the ageing temperatures and, subsequent thermal cycles around the peaks can remove the ageing effect and restore the systems, confirming the co-existence of nonequilibrium and equilibrium states in the regions. We also found that the broad glass transition thermogram is associated with highly stretched relaxation dynamics. The results allow us to draw a conclusion of continuous mobility gradient spanning the two TPP-PS glass-transitions, rather than complete phase separation.

15.
Phys Chem Chem Phys ; 22(20): 11644-11651, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32406438

RESUMEN

We suggest a way to disentangle self- from cross-correlation contributions in the dielectric spectra of glycerol. Recently it was demonstrated for monohydroxy alcohols that a detailed comparison of the dynamic susceptibilities of photon correlation and broadband dielectric spectroscopy allows to unambiguously disentangle a collective relaxation mode known as the Debye process, which arises due to supramolecular structures, and the α-relaxation, which proves to be identical in both methods. In the present paper, we apply the same idea and analysis to the paradigmatic glass former glycerol. For that purpose we present new light scattering data from photon correlation spectroscopy measurements and combine these with literature data to obtain a data set covering a dynamic range from 10-4-1013 Hz. Then we apply the above mentioned analysis by comparing this data set with a corresponding set of broadband dielectric data. Our finding is that even in a polyalcohol self- and cross-correlation contributions can approximately be disentangled in that way and that the emerging picture is very similar to that in monohydroxy alcohols. This is further supported by comparing the data with fast field cycling NMR measurements and dynamic shear relaxation data from the literature, and it turns out that, within the described approach, the α-process appears very similar in all methods, while the pronounced differences observed in the spectral density are due to a different expression of the slow collective relaxational contribution. In the dielectric spectra the strength of this peak is reasonably well estimated by the Kirkwood correlation factor, which supports the view that it arises due to dynamic cross-correlations, which were previously often assumed to be negligible in dielectric measurements.

16.
Phys Chem Chem Phys ; 21(44): 24778-24786, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31686062

RESUMEN

The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the relaxation of transiently H-bonded supramolecular structures. Therefore, its manifestation in a measurement with a local dielectric probe might be expected to be different from the standard macroscopic dielectric experiment. In this work we present such local dielectric measurements obtained by triplet state solvation dynamics (TSD) and compare the results with macroscopic dielectric and light scattering data. In particular, with data from an improved TSD setup, a detailed quantitative comparison reveals that the Debye process does not significantly contribute to the local Stokes shift response function, while α- and ß-relaxations are clearly resolved. Furthermore, this comparison reveals that the structural relaxation has almost identical time constants and shape parameters in all three measurement techniques. Altogether our findings support the notion that the transiently bound chain structures lead to a strong cross-correlation contribution in macroscopic dielectric experiments, to which both light scattering and TSD are insensitive, the latter due to its local character and the former due to the molecular optical anisotropy being largely independent of the OH bonded suprastructures.

17.
Phys Rev Lett ; 121(3): 035501, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30085796

RESUMEN

The slow Debye-like relaxation in the dielectric spectra of monohydroxy alcohols is a matter of long-standing debate. In the present Letter, we probe reorientational dynamics of 5-methyl-2-hexanol with dielectric spectroscopy and depolarized dynamic light scattering (DDLS) in the supercooled regime. While in a previous study of a primary alcohol no indication of the Debye peak in the DDLS spectra was found, we now for the first time report clear evidence of a Debye contribution in a monoalcohol in DDLS. A quantitative comparison between the dielectric and DDLS manifestation of the Debye peak reveals that while the dielectric Debye process represents fluctuations in the end-to-end vector dipole moment of the transient chains, its occurrence in DDLS shows a more local signature and is related to residual correlations that occur due to a slight anisotropy of the α relaxation caused by the chain formation.

18.
J Chem Phys ; 145(23): 234511, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28010095

RESUMEN

We investigate the glassy dynamics of glycerol in the confinement of a microemulsion system, which is stable on cooling down to the glass transition of its components. By changing the composition, we vary the viscosity of the matrix, while keeping the confining geometry intact, as is demonstrated by small angle X-ray scattering. By means of 2H NMR, differential scanning calorimetry, and triplet solvation dynamics we, thus, probe the dynamics of glycerol in confinements of varying rigidity. 2H NMR results show that, at higher temperatures, the dynamics of confined glycerol is unchanged compared to bulk behavior, while the reorientation of glycerol molecules becomes significantly faster than in the bulk in the deeply supercooled regime. However, comparison of different 2H NMR findings with data from calorimetry and solvation dynamics reveals that this acceleration is not due to the changed structural relaxation of glycerol, but rather due to the rotational motion of essentially rigid glycerol droplets or of aggregates of such droplets in a more fluid matrix. Thus, independent of the matrix mobility, the glycerol dynamics remains unchanged except for the smallest droplets, where an increase of Tg and, thus, a slowdown of the structural relaxation is observed even in a fluid matrix.

19.
J Chem Phys ; 142(10): 104902, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-25770560

RESUMEN

In a wide range of soft materials, correlation experiments using laser light or partially coherent X-rays report the so called compressed exponential correlation functions, i. e., decays c(t) ∝ exp(-(t/τ)(ß)) with ß > 1. In many cases, this is related to the relaxation of inner stresses, but in some systems, the source of such a phenomenon is still poorly understood. We performed multi speckle-dynamic light scattering experiments in a system of polystyrene spheres in supercooled propanediol. At low temperatures, compressed exponential decays are observed in a multispeckle experiment, in agreement with the literature findings in similar systems. At the same time, due to the particular geometry of our setup, the speckle pattern shows indication for convection in the sample due to a slight temperature gradient across the sample cuvette mounted in a cold finger cryostat. These effects increase with decreasing temperature and after a temperature jump. In some cases it can be corrected for by assuming convective flow at constant velocity. Such corrections reduce or remove compressed exponential behavior in our experiment.

20.
J Chem Phys ; 138(11): 114501, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23534643

RESUMEN

We investigate the reorientational dynamics of supercooled m-toluidine contained in a matrix of nanoporous Vycor with depolarized dynamic light scattering. Under equilibrium conditions a clear sample is obtained and the dynamics of m-toluidine molecules from inside the nanopores can be accessed via light scattering. However, when supercooling the imbibed liquid at conventional cooling rates, strong non-equilibrium effects occur due to the mismatch of expansion coefficients and the sample gets turbid several tens of Kelvin above the bulk glass transition. Only at cooling rates as low as 0.02 K/min this can be avoided and the dynamics of m-toluidine in confinement can be followed even below the bulk glass transition temperature. In confinement a pronounced acceleration of the reorientational dynamics is observed and the characteristic correlation times follow an Arrhenius law close to T(g). However it seems likely that part of the observed differences to bulk behavior is due to density effects, which are reduced but cannot be fully avoided at low cooling rates.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda