Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Brain ; 147(2): 590-606, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703311

RESUMEN

Frontotemporal lobar degeneration with tau (FTLD-tau) is a group of tauopathies that underlie ∼50% of FTLD cases. Identification of genetic risk variants related to innate/adaptive immunity have highlighted a role for neuroinflammation and neuroimmune interactions in FTLD. Studies have shown microglial and astrocyte activation together with T cell infiltration in the brain of THY-Tau22 tauopathy mice. However, this remains to be confirmed in FTLD-tau patients. We conducted a detailed post-mortem study of FTLD-tau cases including 45 progressive supranuclear palsy with clinical frontotemporal dementia, 33 Pick's disease, 12 FTLD-MAPT and 52 control brains to characterize the link between phosphorylated tau (pTau) epitopes and the innate and adaptive immunity. Tau pathology was assessed in the cerebral cortex using antibodies directed against: Tau-2 (phosphorylated and unphosphorylated tau), AT8 (pSer202/pThr205), AT100 (pThr212/pSer214), CP13 (pSer202), PHF1 (pSer396/pSer404), pThr181 and pSer356. The immunophenotypes of microglia and astrocytes were assessed with phenotypic markers (Iba1, CD68, HLA-DR, CD64, CD32a, CD16 for microglia and GFAP, EAAT2, glutamine synthetase and ALDH1L1 for astrocytes). The adaptive immune response was explored via CD4+ and CD8+ T cell quantification and the neuroinflammatory environment was investigated via the expression of 30 inflammatory-related proteins using V-Plex Meso Scale Discovery. As expected, all pTau markers were increased in FTLD-tau cases compared to controls. pSer356 expression was greatest in FTLD-MAPT cases versus controls (P < 0.0001), whereas the expression of other markers was highest in Pick's disease. Progressive supranuclear palsy with frontotemporal dementia consistently had a lower pTau protein load compared to Pick's disease across tau epitopes. The only microglial marker increased in FTLD-tau was CD16 (P = 0.0292) and specifically in FTLD-MAPT cases (P = 0.0150). However, several associations were detected between pTau epitopes and microglia, supporting an interplay between them. GFAP expression was increased in FTLD-tau (P = 0.0345) with the highest expression in Pick's disease (P = 0.0019), while ALDH1L1 was unchanged. Markers of astrocyte glutamate cycling function were reduced in FTLD-tau (P = 0.0075; Pick's disease: P < 0.0400) implying astrocyte reactivity associated with a decreased glutamate cycling activity, which was further associated with pTau expression. Of the inflammatory proteins assessed in the brain, five chemokines were upregulated in Pick's disease cases (P < 0.0400), consistent with the recruitment of CD4+ (P = 0.0109) and CD8+ (P = 0.0014) T cells. Of note, the CD8+ T cell infiltration was associated with pTau epitopes and microglial and astrocytic markers. Our results highlight that FTLD-tau is associated with astrocyte reactivity, remarkably little activation of microglia, but involvement of adaptive immunity in the form of chemokine-driven recruitment of T lymphocytes.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Enfermedad de Pick , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Epítopos , Demencia Frontotemporal/patología , Degeneración Lobar Frontotemporal/patología , Glutamatos , Enfermedad de Pick/patología , Parálisis Supranuclear Progresiva/patología , Proteínas tau/metabolismo , Tauopatías/patología
2.
Neuropathol Appl Neurobiol ; 50(1): e12965, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38374720

RESUMEN

AIMS: In Alzheimer's disease (AD), the locus coeruleus (LC) undergoes early and extensive neuronal loss, preceded by abnormal intracellular tau aggregation, decades before the onset of clinical disease. Neuromelanin-sensitive MRI has been proposed as a method to image these changes during life. Surprisingly, human post-mortem studies have not examined how changes in LC during the course of the disease relate to cerebral pathology following the loss of the LC projection to the cortex. METHODS: Immunohistochemistry was used to examine markers for 4G8 (pan-Aß) and AT8 (ptau), LC integrity (neuromelanin, dopamine ß-hydroxylase [DßH], tyrosine hydroxylase [TH]) and microglia (Iba1, CD68, HLA-DR) in the LC and related temporal lobe pathology of 59 post-mortem brains grouped by disease severity determined by Braak stage (0-II, III-IV and V-VI). The inflammatory environment was assessed using multiplex assays. RESULTS: Changes in the LC with increasing Braak stage included increased neuronal loss (p < 0.001) and microglial Iba1 (p = 0.005) together with a reduction in neuromelanin (p < 0.001), DßH (p = 0.002) and TH (p = 0.041). Interestingly in LC, increased ptau and loss of neuromelanin were detected from Braak stage III-IV (p = 0.001). At Braak stage V/VI, the inflammatory environment was different in the LC vs TL, highlighting the anatomical heterogeneity of the inflammatory response. CONCLUSIONS: Here, we report the first quantification of neuromelanin during the course of AD and its relationship to AD pathology and neuroinflammation in the TL. Our findings of neuromelanin loss early in AD and before the neuroinflammatory reaction support the use of neuromelanin-MRI as a sensitive technique to identify early changes in AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Locus Coeruleus/metabolismo , Proteínas tau/metabolismo , Encéfalo/patología , Autopsia
3.
J Neuroinflammation ; 20(1): 186, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580767

RESUMEN

The 18kD translocator protein (TSPO) is used as a positron emission tomography (PET) target to quantify neuroinflammation in patients. In Alzheimer's disease (AD), the cerebellum is the pseudo-reference region for comparison with the cerebral cortex due to the absence of AD pathology and lower levels of TSPO. However, using the cerebellum as a pseudo-reference region is debated, with other brain regions suggested as more suitable. This paper aimed to establish the neuroinflammatory differences between the temporal cortex and cerebellar cortex, including TSPO expression. Using 60 human post-mortem samples encompassing the spectrum of Braak stages (I-VI), immunostaining for pan-Aß, hyperphosphorylated (p)Tau, TSPO and microglial proteins Iba1, HLA-DR and MSR-A was performed in the temporal cortex and cerebellum. In the cerebellum, Aß but not pTau, increased over the course of the disease, in contrast to the temporal cortex, where both proteins were significantly increased. TSPO increased in the temporal cortex, more than twofold in the later stages of AD compared to the early stages, but not in the cerebellum. Conversely, Iba1 increased in the cerebellum, but not in the temporal cortex. TSPO was associated with pTau in the temporal cortex, suggesting that TSPO positive microglia may be reacting to pTau itself and/or neurodegeneration at later stages of AD. Furthermore, the neuroinflammatory microenvironment was examined, using MesoScale Discovery assays, and IL15 only was significantly increased in the temporal cortex. Together this data suggests that the cerebellum maintains a more homeostatic environment compared to the temporal cortex, with a consistent TSPO expression, supporting its use as a pseudo-reference region for quantification in TSPO PET scans.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Enfermedades Neuroinflamatorias , Proteínas Mitocondriales/metabolismo , Encéfalo/metabolismo , Microglía/metabolismo , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/metabolismo
4.
Brain Behav Immun ; 113: 415-431, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37543251

RESUMEN

INTRODUCTION: The 18-kDa translocator protein (TSPO) is increasingly recognized as a molecular target for PET imaging of inflammatory responses in various central nervous system (CNS) disorders. However, the reported sensitivity and specificity of TSPO PET to identify brain inflammatory processes appears to vary greatly across disorders, disease stages, and applied quantification methods. To advance TSPO PET as a potential biomarker to evaluate brain inflammation and anti-inflammatory therapies, a better understanding of its applicability across disorders is needed. We conducted a transdiagnostic systematic review and meta-analysis of all in vivo human TSPO PET imaging case-control studies in the CNS. Specifically, we investigated the direction, strength, and heterogeneity associated with the TSPO PET signal across disorders in pre-specified brain regions, and explored the demographic and methodological sources of heterogeneity. METHODS: We searched for English peer-reviewed articles that reported in vivo human case-control TSPO PET differences. We extracted the demographic details, TSPO PET outcomes, and technical variables of the PET procedure. A random-effects meta-analysis was applied to estimate case-control standardized mean differences (SMD) of the TSPO PET signal in the lobar/whole-brain cortical grey matter (cGM), thalamus, and cortico-limbic circuitry between different illness categories. Heterogeneity was evaluated with the I2 statistic and explored using subgroup and meta-regression analyses for radioligand generation, PET quantification method, age, sex, and publication year. Significance was set at the False Discovery Rate (FDR)-corrected P < 0.05. RESULTS: 156 individual case-control studies were included in the systematic review, incorporating data for 2381 healthy controls and 2626 patients. 139 studies documented meta-analysable data and were grouped into 11 illness categories. Across all the illness categories, we observed a significantly higher TSPO PET signal in cases compared to controls for the cGM (n = 121 studies, SMD = 0.358, PFDR < 0.001, I2 = 68%), with a significant difference between the illness categories (P = 0.004). cGM increases were only significant for Alzheimer's disease (SMD = 0.693, PFDR < 0.001, I2 = 64%) and other neurodegenerative disorders (SMD = 0.929, PFDR < 0.001, I2 = 73%). Cortico-limbic increases (n = 97 studies, SMD = 0.541, P < 0.001, I2 = 67%) were most prominent for Alzheimer's disease, mild cognitive impairment, other neurodegenerative disorders, mood disorders and multiple sclerosis. Thalamic involvement (n = 79 studies, SMD = 0.393, P < 0.001, I2 = 71%) was observed for Alzheimer's disease, other neurodegenerative disorders, multiple sclerosis, and chronic pain and functional disorders (all PFDR < 0.05). Main outcomes for systemic immunological disorders, viral infections, substance use disorders, schizophrenia and traumatic brain injury were not significant. We identified multiple sources of between-study variance to the TSPO PET signal including a strong transdiagnostic effect of the quantification method (explaining 25% of between-study variance; VT-based SMD = 0.000 versus reference tissue-based studies SMD = 0.630; F = 20.49, df = 1;103, P < 0.001), patient age (9% of variance), and radioligand generation (5% of variance). CONCLUSION: This study is the first overarching transdiagnostic meta-analysis of case-control TSPO PET findings in humans across several brain regions. We observed robust increases in the TSPO signal for specific types of disorders, which were widespread or focal depending on illness category. We also found a large and transdiagnostic horizontal (positive) shift of the effect estimates of reference tissue-based compared to VT-based studies. Our results can support future studies to optimize experimental design and power calculations, by taking into account the type of disorder, brain region-of-interest, radioligand, and quantification method.

5.
Sante Publique ; 35(HS1): 107-111, 2023 12 01.
Artículo en Francés | MEDLINE | ID: mdl-38040631

RESUMEN

The law modernizing the French health care system sets out the legal framework for what can be called "advanced practice" for medical auxiliaries. This type of health care practice already exists in many countries. In France, we have chosen to deploy it within a team, starting with the nursing profession. Advanced practice has a dual objective: to improve access to care and the quality of patient care by reducing doctors' workloads in targeted pathologies. In addition, advanced practice encourages paramedical professionals to diversify and develop their skills to a high level. Among medical auxiliaries, dental assistants could benefit from this legal framework, in a country where access to primary care and oral health education is complicated, if not impossible in some "medical deserts." The role of these new health care professionals would therefore be to deliver preventive oral care (primary, secondary, and tertiary prevention) to promote and improve patients' oral health.


La loi de modernisation de notre système de santé pose le cadre juridique de ce que l'on peut appeler « la pratique avancée ¼ pour les auxiliaires médicaux. Cet exercice en santé existe déjà dans de nombreux pays. En France, le choix a été fait de le déployer au sein d'une équipe, en commençant par la profession d'infirmier. La pratique avancée vise un double objectif : améliorer l'accès aux soins ainsi que la qualité des parcours des patients en réduisant la charge de travail des médecins sur des pathologies ciblées. En outre, la pratique avancée favorise la diversification de l'exercice des professionnels paramédicaux et débouche sur le développement des compétences vers un haut niveau de maîtrise. Parmi les auxiliaires médicaux, les assistant(e)s dentaires pourraient bénéficier de ce cadre juridique, dans un pays où l'accès aux soins primaires et à l'éducation en santé orale est compliqué, voire impossible dans certains déserts médicaux. Ces nouveaux professionnels de santé auraient donc pour rôle de délivrer des soins bucco-dentaires préventifs (prévention primaire, prévention secondaire et tertiaire) afin de promouvoir et améliorer la santé bucco-dentaire des patients.


Asunto(s)
Asistentes Dentales , Médicos , Humanos , Atención a la Salud , Francia
6.
Stroke ; 53(5): 1633-1642, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35196874

RESUMEN

BACKGROUND: After aneurysmal subarachnoid hemorrhage (SAH), thrombus forms over the cerebral cortex and releases hemoglobin. When extracellular, hemoglobin is toxic to neurones. High local hemoglobin concentration overwhelms the clearance capacity of macrophages expressing the hemoglobin-haptoglobin scavenger receptor CD163. We hypothesized that iron is deposited in the cortex after SAH and would associate with outcome. METHODS: Two complementary cross-sectional studies were conducted. Postmortem brain tissue from 39 SAH (mean postictal interval of 9 days) and 22 control cases was studied with Perls' staining for iron and immunolabeling for CD163, ADAM17 (a disintegrin and metallopeptidase domain 17), CD68, and Iba1 (ionized calcium binding adaptor molecule 1). In parallel, to study the persistence of cortical iron and its relationship to clinical outcome, we conducted a susceptibility-weighted imaging study of 21 SAH patients 6 months postictus and 10 control individuals. RESULTS: In brain tissue from patients dying soon after SAH, the distribution of iron deposition followed a gradient that diminished with distance from the brain surface. Iron was located intracellularly (mainly in macrophages, and occasionally in microglia, neurones, and glial cells) and extracellularly. Microglial activation and motility markers were increased after SAH, with a similar inward diminishing gradient. In controls, there was a positive correlation between CD163 and iron, which was lost after SAH. In SAH survivors, iron-sensitive imaging 6 months post-SAH confirmed persistence of cortical iron, related to the size and location of the blood clot immediately after SAH, and associated with cognitive outcome. CONCLUSIONS: After SAH, iron deposits in the cortical gray matter in a pattern that reflects proximity to the brain surface and thrombus and is related to cognitive outcome. These observations support therapeutic manoeuvres which prevent the permeation of hemoglobin into the cortex after SAH.


Asunto(s)
Hemorragia Subaracnoidea , Trombosis , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Estudios Transversales , Hemoglobinas/metabolismo , Humanos , Hierro/metabolismo , Hemorragia Subaracnoidea/complicaciones , Trombosis/complicaciones
7.
Neurobiol Dis ; 168: 105698, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35314318

RESUMEN

Dementia with Lewy bodies (DLB) is the second most common neurodegenerative cause of dementia, behind Alzheimer's disease (AD). The profile of inflammation in AD has been extensively researched in recent years, with evidence that chronic peripheral inflammation in midlife increases the risk of late-onset AD, and data supporting inflammation being associated with disease progression. In contrast, our understanding of the role of inflammation in DLB is less developed. Most research to date has examined inflammation in related disorders, such as Parkinson's disease, but there is now a growing range of literature examining inflammation in DLB itself. We present a review of the literature in this field, exploring a range of research methodologies including those quantifying markers of inflammation in cerebrospinal fluid, peripheral blood, post-mortem brain tissue, and using neuroimaging and preclinical data. Our review reveals evidence from PET imaging and peripheral blood analysis to support an increase in cerebral and peripheral inflammation in mild or prodromal DLB, that dissipates with disease progression. We present evidence from post-mortem brain tissue and pre-clinical studies that indicate α-synuclein directly promotes inflammation, but that also support the presence of AD co-pathology as an important factor in the profile of neuroinflammation in DLB. We propose that specific markers of inflammation may play a sentinel role in the mild stage of the disease, particularly when combined with AD pathology. We advocate further examination of the profile of inflammation in DLB through robust longitudinal studies, to enhance our understanding of the pathogenesis of the disease. The goal should be to utilise future results to develop a composite biomarker to aid diagnosis of DLB, and to potentially identify novel therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Enfermedad de Alzheimer/complicaciones , Biomarcadores/líquido cefalorraquídeo , Progresión de la Enfermedad , Humanos , Inflamación , Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/patología
8.
Neuropathol Appl Neurobiol ; 48(2): e12766, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34528715

RESUMEN

The purpose of BRAIN UK (the UK BRain Archive Information Network) is to make the very extensive and comprehensive National Health Service (NHS) Neuropathology archives available to the national and international neuroscience research community. The archives comprise samples of tumours and a wide range of other neurological disorders, not only from the brain but also spinal cord, peripheral nerve, muscle, eye and other organs when relevant. BRAIN UK was founded after the recognition of the importance of this large tissue resource, which was not previously readily accessible for research use. BRAIN UK has successfully engaged the majority of the regional clinical neuroscience centres in the United Kingdom to produce a centralised database of the extensive autopsy and biopsy archive. Together with a simple application process and its broad ethical approval, BRAIN UK offers researchers easy access to most of the national archives of neurological tissues and tumours (http://www.brain-uk.org). The range of tissues available reflects the spectrum of disease in society, including many conditions not covered by disease-specific brain banks, and also allows relatively large numbers of cases of uncommon conditions to be studied. BRAIN UK has supported 141 studies (2010-2020) that have generated 70 publications employing methodology as diverse as morphometrics, genetics, proteomics and methylomics. Tissue samples that would otherwise have been unused have supported valuable neuroscience research. The importance of this unique resource will only increase as molecular techniques applicable to human tissues continue to develop and technical advances permit large-scale high-throughput studies.


Asunto(s)
Bancos de Muestras Biológicas , Encéfalo/patología , Neurociencias , Investigación , Humanos , Neuropatología , Medicina Estatal , Reino Unido
9.
Brain ; 144(6): 1869-1883, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33723589

RESUMEN

We studied the effects of systemic infection on brain cytokine level and cerebral vascular function in Alzheimer's disease and vascular dementia, in superior temporal cortex (Brodmann area 22) from Alzheimer's disease patients (n = 75), vascular dementia patients (n = 22) and age-matched control subjects (n = 46), stratified according to the presence or absence of terminal systemic infection. Brain cytokine levels were measured using Mesoscale Discovery Multiplex Assays and markers of cerebrovascular function were assessed by ELISA. Multiple brain cytokines were elevated in Alzheimer's disease and vascular dementia: IL-15 and IL-17A were maximally elevated in end-stage Alzheimer's disease (Braak tangle stage V-VI) whereas IL-2, IL-5, IL12p40 and IL-16 were highest in intermediate Braak tangle stage III-IV disease. Several cytokines (IL-1ß, IL-6, TNF-α, IL-8 and IL-15) were further raised in Alzheimer's disease with systemic infection. Cerebral hypoperfusion-indicated by decreased MAG:PLP1 and increased vascular endothelial growth factor-A (VEGF)-and blood-brain barrier leakiness, indicated by raised levels of fibrinogen, were exacerbated in Alzheimer's disease and vascular dementia patients, and also in non-dementia controls, with systemic infection. Amyloid-ß42 level did not vary with infection or in association with brain cytokine levels. In controls, cortical perfusion declined with increasing IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-12p70, IL-13 and tumour necrosis factor-α (TNF-α) but these relationships were lost with progression of Alzheimer's disease, and with infection (even in Braak stage 0-II brains). Cortical platelet-derived growth factor receptor-ß (PDGFRß), a pericyte marker, was reduced, and endothelin-1 (EDN1) level was increased in Alzheimer's disease; these were related to amyloid-ß level and disease progression and only modestly affected by systemic infection. Our findings indicate that systemic infection alters brain cytokine levels and exacerbates cerebral hypoperfusion and blood-brain barrier leakiness associated with Alzheimer's disease and vascular dementia, independently of the level of insoluble amyloid-ß, and highlight systemic infection as an important contributor to dementia, requiring early identification and treatment in the elderly population.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Encéfalo/irrigación sanguínea , Encéfalo/inmunología , Sepsis/complicaciones , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Barrera Hematoencefálica/patología , Encéfalo/patología , Circulación Cerebrovascular , Citocinas/inmunología , Demencia Vascular/complicaciones , Femenino , Humanos , Masculino , Sepsis/inmunología
10.
Brain ; 144(3): 724-745, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33527991

RESUMEN

Neuroinflammation is involved in the aetiology of many neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and motor neuron disease. Whether neuroinflammation also plays an important role in the pathophysiology of frontotemporal dementia is less well known. Frontotemporal dementia is a heterogeneous classification that covers many subtypes, with the main pathology known as frontotemporal lobar degeneration. The disease can be categorized with respect to the identity of the protein that causes the frontotemporal lobar degeneration in the brain. The most common subgroup describes diseases caused by frontotemporal lobar degeneration associated with tau aggregation, also known as primary tauopathies. Evidence suggests that neuroinflammation may play a role in primary tauopathies with genome-wide association studies finding enrichment of genetic variants associated with specific inflammation-related gene loci. These loci are related to both the innate immune system, including brain resident microglia, and the adaptive immune system through possible peripheral T-cell involvement. This review discusses the genetic evidence and relates it to findings in animal models expressing pathogenic tau as well as to post-mortem and PET studies in human disease. Across experimental paradigms, there seems to be a consensus regarding the involvement of innate immunity in primary tauopathies, with increased microglia and astrocyte density and/or activation, as well as increases in pro-inflammatory markers. Whilst it is less clear as to whether inflammation precedes tau aggregation or vice versa; there is strong evidence to support a microglial contribution to the propagation of hyperphosphorylated in tau frontotemporal lobar degeneration associated with tau aggregation. Experimental evidence-albeit limited-also corroborates genetic data pointing to the involvement of cellular adaptive immunity in primary tauopathies. However, it is still unclear whether brain recruitment of peripheral immune cells is an aberrant result of pathological changes or a physiological aspect of the neuroinflammatory response to the tau pathology.


Asunto(s)
Inmunidad Adaptativa/inmunología , Demencia Frontotemporal/inmunología , Neuroglía/inmunología , Tauopatías/inmunología , Animales , Demencia Frontotemporal/patología , Humanos , Neuroglía/patología , Tauopatías/patología
11.
Alzheimers Dement ; 18(2): 360-376, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34223696

RESUMEN

The morphological plasticity of microglia has fascinated neuroscientists for 100 years. Attempts to classify functional phenotypes are hampered by similarities between endogenous brain microglia and peripheral myeloid cells that can enter the brain under pathological conditions. Recent advances in single-cell -omic methodologies have led to an explosion of data regarding gene expression in microglia. Herein, we review the diversity of microglial phenotypes in healthy brains, aging, and Alzheimer's disease (AD); identify knowledge gaps in the body of evidence; and suggest areas in which new knowledge would be useful. Data from human samples and mouse models are compared and contrasted. Understanding the molecular complexity of the microglial response repertoire will suggest new avenues for therapeutic treatments in AD.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Envejecimiento/genética , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Humanos , Ratones , Microglía/metabolismo , Fenotipo , Transcriptoma
12.
Stroke ; 52(11): 3613-3623, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34281379

RESUMEN

Background and Purpose: Spontaneous intracerebral hemorrhage (sICH) is a common form of hemorrhagic stroke, with high mortality and morbidity. Pathophysiological mechanisms in sICH are poorly understood and treatments limited. Neuroinflammation driven by microglial-macrophage activation contributes to brain damage post-sICH. We aim to test the hypothesis that an anti-inflammatory (repair) process occurs in parallel with neuroinflammation in clinical sICH. Methods: We performed quantitative analysis of immunohistochemical markers for microglia and macrophages (Iba1, CD68, TMEM119, CD163, and CD206) in brain tissue biospecimens 1 to 12 days post-sICH and matched control cases. In a parallel, prospective group of patients, we assayed circulating inflammatory markers (CRP [C-reactive protein], total white cell, and monocyte count) over 1 to 12 days following sICH. Results: In 27 supratentorial sICH cases (n=27, median [interquartile range] age: 59 [52­80.5], 14F/13M) all microglia-macrophage markers increased post-sICH, relative to control brains. Anti-inflammatory markers (CD163 and CD206) were elevated alongside proinflammatory markers (CD68 and TMEM119). CD163 increased progressively post-sICH (15.0-fold increase at 7­12 days, P<0.001). CD206 increased at 3 to 5 days (5.2-fold, P<0.001) then returned to control levels at 7 to 12 days. The parenchymal immune response combined brain-derived microglia (TMEM119 positive) and invading monocyte-derived macrophages (CD206 positive). In a prospective sICH patient cohort (n=26, age 74 [66­79], National Institutes of Health Stroke Scale on admission: 8 [4­17]; 14F/12M) blood CRP concentration and monocyte density (but not white blood cell) increased post-sICH. CRP increased from 0 to 2 to 3 to 5 days (8.3-fold, P=0.020) then declined at 7 to 12 days. Monocytes increased from 0 to 2 to 3 to 5 days (1.8-fold, P<0.001) then declined at 7 to 12 days. Conclusions: An anti-inflammatory pathway, enlisting native microglia and blood monocytes, occurs alongside neuroinflammation post-sICH. This novel pathway offers therapeutic targets and a window of opportunity (3­5 days post-sICH) for delivery of therapeutics via invading monocytes.


Asunto(s)
Hemorragia Cerebral/inmunología , Accidente Cerebrovascular Hemorrágico/inmunología , Inmunidad Innata/inmunología , Enfermedades Neuroinflamatorias/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Hemorragia Cerebral/patología , Femenino , Accidente Cerebrovascular Hemorrágico/patología , Humanos , Macrófagos/inmunología , Masculino , Microglía/inmunología , Persona de Mediana Edad , Enfermedades Neuroinflamatorias/patología
13.
Brain Behav Immun ; 97: 319-327, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34339805

RESUMEN

A causal relationship between immune dysregulation and schizophrenia has been supported by genome-wide association studies and epidemiological evidence. It remains unclear to what extent the brain immune environment is implicated in this hypothesis. We investigated the immunophenotype of microglia and the presence of perivascular macrophages and T lymphocytes in post-mortem brain tissue. Dorsal prefrontal cortex of 40 controls (22F:18M) and 37 (10F:27M) schizophrenia cases, of whom 16 had active psychotic symptoms at the time of death, was immunostained for seven markers of microglia (CD16, CD32a, CD64, CD68, HLA-DR, Iba1 and P2RY12), two markers for perivascular macrophages (CD163 and CD206) and T-lymphocytes (CD3). Automated quantification was blinded to the case designation and performed separately on the grey and white matter. 3D reconstruction of Iba1-positive microglia was performed in selected cases. An increased cortical expression of microglial Fcγ receptors (CD64 F = 7.92, p = 0.007; CD64/HLA-DR ratio F = 5.02, p = 0.029) highlights the importance of communication between the central and peripheral immune systems in schizophrenia. Patients in whom psychotic symptoms were present at death demonstrated an age-dependent increase of Iba1 and increased CD64/HLA-DR ratios relative to patients without psychotic symptoms. Microglia in schizophrenia demonstrated a primed/reactive morphology. A potential role for T-lymphocytes was observed, but we did not confirm the presence of recruited macrophages in the brains of schizophrenia patients. Taking in account the limitations of a post-mortem study, our findings support the hypothesis of an alteration of the brain immune environment in schizophrenia, with symptomatic state- and age-dependent effects.


Asunto(s)
Esquizofrenia , Encéfalo/metabolismo , Estudio de Asociación del Genoma Completo , Antígenos HLA-DR/metabolismo , Humanos , Microglía/metabolismo
14.
Alzheimers Dement ; 17(10): 1735-1755, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34080771

RESUMEN

Neuroinflammation contributes to Alzheimer's disease (AD) progression. Secondary inflammatory insults trigger delirium and can accelerate cognitive decline. Individual cellular contributors to this vulnerability require elucidation. Using APP/PS1 mice and AD brain, we studied secondary inflammatory insults to investigate hypersensitive responses in microglia, astrocytes, neurons, and human brain tissue. The NLRP3 inflammasome was assembled surrounding amyloid beta, and microglia were primed, facilitating exaggerated interleukin-1ß (IL-1ß) responses to subsequent LPS stimulation. Astrocytes were primed to produce exaggerated chemokine responses to intrahippocampal IL-1ß. Systemic LPS triggered microglial IL-1ß, astrocytic chemokines, IL-6, and acute cognitive dysfunction, whereas IL-1ß disrupted hippocampal gamma rhythm, all selectively in APP/PS1 mice. Brains from AD patients with infection showed elevated IL-1ß and IL-6 levels. Therefore, amyloid leaves the brain vulnerable to secondary inflammation at microglial, astrocytic, neuronal, and cognitive levels, and infection amplifies neuroinflammatory cytokine synthesis in humans. Exacerbation of neuroinflammation to produce deleterious outcomes like delirium and accelerated disease progression merits careful investigation in humans.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Astrocitos/metabolismo , Inflamación/inmunología , Interleucina-1beta/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Amiloide/metabolismo , Animales , Encéfalo , Citocinas/metabolismo , Hipocampo , Humanos , Inflamasomas , Ratones , Ratones Transgénicos
15.
J Neurol Neurosurg Psychiatry ; 91(11): 1219-1226, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32968032

RESUMEN

BACKGROUND: Inflammation plays a key role in the aetiology and progression of Alzheimer's disease (AD). However, the immunophenotype of the second most common neurodegenerative cause of dementia, dementia with Lewy bodies (DLB), remains unclear. To date there have been no studies examining peripheral inflammation in DLB using multiplex immunoassay and flow cytometry concomitantly. We hypothesised that, using blood biomarkers, DLB would show an increased proinflammatory profile compared with controls, and that there would be a distinct profile compared with AD. METHODS: 93 participants (31 with DLB, 31 with AD and 31 healthy older controls) completed a single study visit for neuropsychiatric testing and phlebotomy. Peripheral blood mononuclear cells were quantified for T and B cell subsets using flow cytometry, and serum cytokine concentrations were measured using multiplex immunoassay. RESULTS: We detected reduced relative numbers of helper T cells and reduced activation of B cells in DLB compared with AD. Additionally, interleukin (IL)-1ß was detected more frequently in DLB and the serum concentration of IL-6 was increased compared with controls. CONCLUSIONS: Peripheral inflammation is altered in DLB compared with AD, with T cell subset analysis supporting a possible shift towards senescence of the adaptive immune system in DLB. Furthermore, there is a proinflammatory signature of serum cytokines in DLB. Identification of this unique peripheral immunophenotype in DLB could guide development of an immune-based biomarker and direct future work exploring potential immune modulation as a novel treatment.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Linfocitos B/inmunología , Interleucina-1beta/inmunología , Interleucina-6/inmunología , Enfermedad por Cuerpos de Lewy/inmunología , Monocitos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/fisiopatología , Estudios de Casos y Controles , Citocinas/inmunología , Femenino , Citometría de Flujo , Humanos , Inmunoensayo , Inmunofenotipificación , Enfermedad por Cuerpos de Lewy/fisiopatología , Masculino , Pruebas de Estado Mental y Demencia , Persona de Mediana Edad , Pruebas Neuropsicológicas
16.
Brain ; 142(7): 2113-2126, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31157360

RESUMEN

We performed a 15-year post-mortem neuropathological follow-up of patients in the first trial of amyloid-ß immunotherapy for Alzheimer's disease. Twenty-two participants of a clinical trial of active amyloid-ß42 immunization (AN1792, Elan Pharmaceuticals) or placebo were studied. Comprehensive post-mortem neuropathological assessments were performed from 4 months to 15 years after the trial. We analysed the relationships between the topographical distribution of amyloid-ß removal from the cerebral cortex and tau pathology, cerebrovascular territories, plasma anti-AN1792 antibody titres and late cognitive status. Seventeen of 22 (77%) participants had Alzheimer's neuropathological change, whereas 5 of 22 (23%) had alternative causes for dementia (progressive supranuclear palsy = 1, Lewy body disease = 1, vascular brain injury = 1, and frontotemporal lobar degeneration = 2). Nineteen of the 22 participants had received the active agent, three the placebo. Fourteen of 16 (88%) patients with Alzheimer's disease receiving the active agent had evidence of plaque removal (very extensive removal = 5, intermediate = 4, very limited = 5, no removal = 2). Of particular note, two Alzheimer's patients who died 14 years after immunization had only very sparse or no detectable plaques in all regions examined. There was a significant inverse correlation between post-vaccination peripheral blood anti-AN1792 antibody titres and post-mortem plaque scores (ρ = - 0.664, P = 0.005). Cortical foci cleared of plaques contained less tau than did cortex with remaining plaques, but the overall distribution of tangles was extensive (Braak V/VI). In conclusion, patients with Alzheimer's disease actively immunized against amyloid-ß can remain virtually plaque-free for 14 years. The extent of plaque removal is related to the immune response. This long duration of efficacy is important in support of active immunization protocols as therapy for, or potentially prevention of, neurodegeneration-associated protein accumulations. Inclusion of patients without Alzheimer's disease in Alzheimer's therapy trials is a problem for assessing the efficacy of treatment. Despite modification of Alzheimer's pathology, most patients had progressed to severe dementia, notably including the five with very extensive plaque removal, possibly due to continued tau propagation. Neuropathology follow-up of patients in therapeutic trials provides valuable information on the causes of dementia and effects of treatment.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/inmunología , Fragmentos de Péptidos/inmunología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/complicaciones , Anticuerpos/sangre , Corteza Cerebral/metabolismo , Ensayos Clínicos como Asunto , Demencia/complicaciones , Demencia/diagnóstico , Demencia/patología , Estudios de Seguimiento , Humanos , Inmunización , Persona de Mediana Edad , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/patología , Placa Amiloide/metabolismo , Factores de Tiempo , Proteínas tau/metabolismo
17.
Eur J Nucl Med Mol Imaging ; 46(13): 2831-2847, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31396666

RESUMEN

Neuroinflammation, as defined by the activation of microglia and astrocytes, has emerged in the last years as a key element of the pathogenesis of neurodegenerative diseases based on genetic findings and preclinical and human studies. This has raised the need for new methodologies to assess and follow glial activation in patients, prompting the development of PET ligands for molecular imaging of glial cells and novel structural MRI and DTI tools leading to a multimodal approach. The present review describes the recent advancements in microglia and astrocyte biology in the context of health, ageing, and Alzheimer's disease, the most common dementia worldwide. The review further delves in molecular imaging discussing the challenges associated with past and present targets, including conflicting findings, and finally, presenting novel methodologies currently explored to improve our in vivo knowledge of the neuroinflammatory patterns in Alzheimer's disease. With glial cell activation as a potential therapeutic target in neurodegenerative diseases, the translational research between cell biologists, chemists, physicists, radiologists, and neurologists should be strengthened.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Neuroimagen/métodos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Astrocitos/patología , Disfunción Cognitiva/diagnóstico por imagen , Humanos , Inflamación/complicaciones , Receptores de GABA/metabolismo
18.
J Neural Transm (Vienna) ; 125(5): 827-846, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28516241

RESUMEN

The mouse is one of the organisms most widely used as an animal model in biomedical research, due to the particular ease with which it can be handled and reproduced in laboratory. As a member of the mammalian class, mice share with humans many features regarding metabolic pathways, cell morphology and anatomy. However, important biological differences between mice and humans exist and must be taken into consideration when interpreting research results, to properly translate evidence from experimental studies into information that can be useful for human disease prevention and/or treatment. With respect to Alzheimer's disease (AD), much of the experimental information currently known about this disease has been gathered from studies using mainly mice as models. Therefore, it is notably important to fully characterise the differences between mice and humans regarding important aspects of the disease. It is now widely known that inflammation plays an important role in the development of AD, a role that is not only a response to the surrounding pathological environment, but rather seems to be strongly implicated in the aetiology of the disease as indicated by the genetic studies. This review highlights relevant differences in inflammation and in microglia, the innate immune cell of the brain, between mice and humans regarding genetics and morphology in normal ageing, and the relationship of microglia with AD-like pathology, the inflammatory profile, and cognition. We conclude that some noteworthy differences exist between mice and humans regarding microglial characteristics, in distribution, gene expression, and states of activation. This may have repercussions in the way that transgenic mice respond to, and influence, the AD-like pathology. However, despite these differences, human and mouse microglia also show similarities in morphology and behaviour, such that the mouse is a suitable model for studying the role of microglia, as long as these differences are taken into consideration when delineating new strategies to approach the study of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Modelos Animales de Enfermedad , Inmunidad Innata/inmunología , Enfermedad de Alzheimer/patología , Animales , Humanos , Inflamación/inmunología , Inflamación/patología , Ratones
19.
Stroke ; 47(3): 872-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26768209

RESUMEN

BACKGROUND AND PURPOSE: Long-term outcome after subarachnoid hemorrhage (SAH) is potentially linked to cytotoxic heme. Free heme is bound by hemopexin and rapidly scavenged by CD91. We hypothesized that heme scavenging in the brain would be associated with outcome after hemorrhage. METHODS: Using cerebrospinal fluid and tissue from patients with SAH and control individuals, the activity of the intracranial CD91-hemopexin system was examined using ELISA, ultrahigh performance liquid chromatography, and immunohistochemistry. RESULTS: In control individuals, cerebrospinal fluid hemopexin was mainly synthesized intrathecally. After SAH, cerebrospinal fluid hemopexin was high in one third of cases, and these patients had a higher probability of delayed cerebral ischemia and poorer neurological outcome. The intracranial CD91-hemopexin system was active after SAH because CD91 positively correlated with iron deposition in brain tissue. Heme-hemopexin uptake saturated rapidly after SAH because bound heme accumulated early in the cerebrospinal fluid. When the blood-brain barrier was compromised after SAH, serum hemopexin level was lower, suggesting heme transfer to the circulation for peripheral CD91 scavenging. CONCLUSIONS: The CD91-heme-hemopexin scavenging system is important after SAH and merits further study as a potential prognostic marker and therapeutic target.


Asunto(s)
Encéfalo/metabolismo , Hemo/líquido cefalorraquídeo , Hemopexina/líquido cefalorraquídeo , Hemorragia Subaracnoidea/líquido cefalorraquídeo , Hemorragia Subaracnoidea/diagnóstico , Biomarcadores/líquido cefalorraquídeo , Femenino , Humanos , Masculino , Resultado del Tratamiento
20.
J Neuroinflammation ; 13(1): 135, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27256292

RESUMEN

BACKGROUND: Genetic risk factors for Alzheimer's disease imply that inflammation plays a causal role in development of the disease. Experimental studies suggest that microglia, as the brain macrophages, have diverse functions, with their main role in health being to survey the brain parenchyma through highly motile processes. METHODS: Using the Medical Research Council Cognitive Function and Ageing Studies resources, we have immunophenotyped microglia to investigate their role in dementia with Alzheimer's pathology. Cerebral cortex obtained at post-mortem from 299 participants was analysed by immunohistochemistry for cluster of differentiation (CD)68 (phagocytosis), human leukocyte antigen (HLA)-DR (antigen-presenting function), ionized calcium-binding adaptor molecule (Iba1) (microglial motility), macrophage scavenger receptor (MSR)-A (plaque-related phagocytosis) and CD64 (immunoglobulin Fcγ receptor I). RESULTS: The presence of dementia was associated positively with CD68 (P < 0.001), MSR-A (P = 0.010) and CD64 (P = 0.007) and negatively with Iba1 (P < 0.001). Among participants without dementia, the cognitive function according to the Mini-Mental State Examination was associated positively with Iba1 (P < 0.001) and negatively with CD68 (P = 0.033), and in participants with dementia and Alzheimer's pathology, positively with all microglial markers except Iba1. Overall, in participants without dementia, the relationship with Alzheimer's pathology was negative or not significant, and positive in participants with dementia and Alzheimer's pathology. Apolipoprotein E (APOE) ε2 allele was associated with expression of Iba1 (P = 0.001) and MSR-A (P < 0.001) and APOE ε4 with CD68, HLA-DR and CD64 (P < 0.001). CONCLUSIONS: Our findings raise the possibility that in dementia with Alzheimer's pathology, microglia lose motility (Iba-1) necessary to support neurons. Conversely, other microglial proteins (CD68, MSR-A), the role of which is clearance of damaged cellular material, are positively associated with Alzheimer's pathology and impaired cognitive function. In addition, our data imply that microglia may respond differently to Aß and tau in participants with and without dementia so that the microglial activity could potentially influence the likelihood of developing dementia, as supported by genetic studies, highlighting the complexity and diversity of microglial responses.


Asunto(s)
Enfermedad de Alzheimer/patología , Citocinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Demencia/patología , Metionina Sulfóxido Reductasas/metabolismo , Microglía/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/complicaciones , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Proteínas de Unión al Calcio , Estudios de Cohortes , Demencia/complicaciones , Diagnóstico , Femenino , Antígenos HLA-DR/metabolismo , Humanos , Masculino , Escala del Estado Mental , Proteínas de Microfilamentos , Pruebas Neuropsicológicas , Receptores de IgG/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda