Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Geroscience ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509416

RESUMEN

The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent subcutaneous bioidentical E2 chronic treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC). The finding that hypomethylation (p = 1.6 × 10-51) and upregulation (p = 3.8 × 10-3) of UBE2M across both brain regions provide strong evidence for molecular differences in the brain induced by E2 depletion. Additionally, differential expression (p = 1.9 × 10-4; interaction p = 3.5 × 10-2) of LTBR in the PFC provides further support for the role E2 plays in the brain, by demonstrating that the regulation of some genes that are altered by ovariectomy may also be modulated by Ov followed by hormone replacement therapy (HRT). These results present real opportunities to understand the specific biological mechanisms that are altered with depleted E2. Given E2's potential role in cognitive decline and neuroinflammation, our findings could lead to the discovery of novel therapeutics to slow cognitive decline. Together, this work represents a major step toward understanding molecular changes in the brain that are caused by ovariectomy and how E2 treatment may revert or protect against the negative neuro-related consequences caused by a depletion in estrogen as women approach menopause.

2.
bioRxiv ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38187564

RESUMEN

The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent E2 treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC). The finding that hypomethylation (p=1.6×10-51) and upregulation (p=3.8×10-3) of UBE2M across both brain regions, provide strong evidence for molecular differences in the brain induced by E2 depletion. Additionally, differential expression (p=1.9×10-4; interaction p=3.5×10-2) of LTBR in the PFC, provides further support for the role E2 plays in the brain, by demonstrating that the regulation of some genes that are altered by ovariectomy may also be modulated by Ov followed by hormone replacement therapy (HRT). These results present real opportunities to understand the specific biological mechanisms that are altered with depleted E2. Given E2's potential role in cognitive decline and neuroinflammation, our findings could lead to the discovery of novel therapeutics to slow cognitive decline. Together, this work represents a major step towards understanding molecular changes in the brain that are caused by ovariectomy and how E2 treatment may revert or protect against the negative neuro-related consequences caused by a depletion in estrogen as women approach menopause.

3.
Artículo en Inglés | MEDLINE | ID: mdl-30740525

RESUMEN

Exposure therapy is a key element of cognitive-behavioral therapy for youth with anxiety. However, few clinicians outside of specialty anxiety clinics routinely use exposures with anxious youth. This study reports on the acceptability and feasibility of a clinician support toolkit for exposures with anxious youth in community settings. The toolkit was developed through an extensive literature review of exposure science and cited barriers to exposure therapy, with input from multiple experts in pediatric anxiety (n = 10). Acceptability and feasibility data was gathered via survey from 70 community clinicians attending a training on exposure therapy for youth. Qualitative data was collected from a subset of participants who used the toolkit with youth on their caseload for approximately one month. Survey data suggested that the toolkit was viewed highly favorably. Qualitative interviews indicated that the toolkit was viewed as a feasible therapeutic tool that positively impacted clinician motivation to use exposure. Primary challenges related to exposure use more generally, and included client and service setting barriers. Results suggested initial toolkit acceptability and feasibility. Future work to refine the toolkit and test its efficacy as an implementation strategy to increase clinician use of exposure therapy is warranted. Next steps include development of additional content in partnership with key stakeholders, and testing the toolkit's impact on increasing clinician use of exposure therapy.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda