Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Angiogenesis ; 27(1): 37-49, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37493987

RESUMEN

Modern drug development increasingly requires comprehensive models that can be utilized in the earliest stages of compound and target discovery. Here we report a phenotypic screening exercise in a high-throughput Organ-on-a-Chip setup. We assessed the inhibitory effect of 1537 protein kinase inhibitors in an angiogenesis assay. Over 4000 micro-vessels were grown under perfusion flow in microfluidic chips, exposed to a cocktail of pro-angiogenic factors and subsequently exposed to the respective kinase inhibitors. Efficacy of compounds was evaluated by reduced angiogenic sprouting, whereas reduced integrity of the main micro-vessel was taken as a measure for toxicity. The screen yielded 53 hits with high anti-angiogenicity and low toxicity, of which 44 were previously unassociated with angiogenic pathways. This study demonstrates that Organ-on-a-Chip models can be screened in high numbers to identify novel compounds and targets. This will ultimately reduce bias in early-stage drug development and increases probability to identify first in class compounds and targets for today's intractable diseases.


Asunto(s)
Angiogénesis , Antineoplásicos , Humanos , Sistemas Microfisiológicos , Antineoplásicos/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología
2.
J Pharm Sci ; 111(1): 214-224, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838780

RESUMEN

The aim of this study was to develop an in vitro drug permeability methodology which mimics the gastrointestinal environment more accurately than conventional 2D methodologies through a three-dimensional (3D) Caco-2 tubules using a microphysiological system. Such a system offers significant advantages, including accelerated cellular polarization and more accurate mimicry of the in vivo environment. This methodology was confirmed by measuring the permeability of propranolol as a model compound, and subsequently applied to those of solifenacin and bile acids for a comprehensive understanding of permeability for the drug product in the human gastrointestinal tract. To protect the Caco-2 tubules from bile acid toxicity, a mucus layer was applied on the surface of Caco-2 tubules and it enables to use simulated intestinal fluid. The assessment using propranolol reproduced results equivalent to those obtained from conventional methodology, while that using solifenacin indicated fluctuations in the permeability of solifenacin due to various factors, including interaction with bile acids. We therefore suggest that this model will serve as an alternative testing system for measuring drug absorption in an environment closely resembling that of the human gastrointestinal tract.


Asunto(s)
Ácidos y Sales Biliares , Tracto Gastrointestinal , Células CACO-2 , Permeabilidad de la Membrana Celular , Humanos , Absorción Intestinal , Permeabilidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda