Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Cell ; 185(3): 493-512.e25, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032429

RESUMEN

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathology, and it remains unclear whether T cells contribute to disease pathology. Here, we combined single-cell transcriptomics and single-cell proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune-complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Proportions of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a were associated with fatal outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.


Asunto(s)
COVID-19/inmunología , COVID-19/patología , Activación de Complemento , Proteoma , SARS-CoV-2/inmunología , Linfocitos T Citotóxicos/inmunología , Transcriptoma , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/virología , Factores Quimiotácticos/metabolismo , Citotoxicidad Inmunológica , Células Endoteliales/virología , Femenino , Humanos , Activación de Linfocitos , Masculino , Microvasos/virología , Persona de Mediana Edad , Monocitos/metabolismo , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Análisis de la Célula Individual , Adulto Joven
2.
Nature ; 631(8021): 645-653, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987596

RESUMEN

Platelet homeostasis is essential for vascular integrity and immune defence1,2. Although the process of platelet formation by fragmenting megakaryocytes (MKs; thrombopoiesis) has been extensively studied, the cellular and molecular mechanisms required to constantly replenish the pool of MKs by their progenitor cells (megakaryopoiesis) remains unclear3,4. Here we use intravital imaging to track the cellular dynamics of megakaryopoiesis over days. We identify plasmacytoid dendritic cells (pDCs) as homeostatic sensors that monitor the bone marrow for apoptotic MKs and deliver IFNα to the MK niche triggering local on-demand proliferation and maturation of MK progenitors. This pDC-dependent feedback loop is crucial for MK and platelet homeostasis at steady state and under stress. pDCs are best known for their ability to function as vigilant detectors of viral infection5. We show that virus-induced activation of pDCs interferes with their function as homeostatic sensors of megakaryopoiesis. Consequently, activation of pDCs by SARS-CoV-2 leads to excessive megakaryopoiesis. Together, we identify a pDC-dependent homeostatic circuit that involves innate immune sensing and demand-adapted release of inflammatory mediators to maintain homeostasis of the megakaryocytic lineage.


Asunto(s)
COVID-19 , Células Dendríticas , Homeostasis , Megacariocitos , Trombopoyesis , Células Dendríticas/inmunología , Células Dendríticas/citología , Animales , Megacariocitos/citología , Megacariocitos/inmunología , Ratones , COVID-19/inmunología , COVID-19/virología , Masculino , Femenino , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Interferón-alfa/metabolismo , Inmunidad Innata , Plaquetas/inmunología , Plaquetas/citología , Humanos , Apoptosis , Ratones Endogámicos C57BL , Médula Ósea/inmunología , Linaje de la Célula , Proliferación Celular , Retroalimentación Fisiológica
3.
Nature ; 608(7924): 766-777, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948637

RESUMEN

Myocardial infarction is a leading cause of death worldwide1. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality2. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.


Asunto(s)
Remodelación Atrial , Ensamble y Desensamble de Cromatina , Perfilación de la Expresión Génica , Infarto del Miocardio , Análisis de la Célula Individual , Remodelación Ventricular , Remodelación Atrial/genética , Estudios de Casos y Controles , Cromatina/genética , Epigenoma , Humanos , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores de Tiempo , Remodelación Ventricular/genética
4.
Nature ; 589(7841): 281-286, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33176333

RESUMEN

Kidney fibrosis is the hallmark of chronic kidney disease progression; however, at present no antifibrotic therapies exist1-3. The origin, functional heterogeneity and regulation of scar-forming cells that occur during human kidney fibrosis remain poorly understood1,2,4. Here, using single-cell RNA sequencing, we profiled the transcriptomes of cells from the proximal and non-proximal tubules of healthy and fibrotic human kidneys to map the entire human kidney. This analysis enabled us to map all matrix-producing cells at high resolution, and to identify distinct subpopulations of pericytes and fibroblasts as the main cellular sources of scar-forming myofibroblasts during human kidney fibrosis. We used genetic fate-tracing, time-course single-cell RNA sequencing and ATAC-seq (assay for transposase-accessible chromatin using sequencing) experiments in mice, and spatial transcriptomics in human kidney fibrosis, to shed light on the cellular origins and differentiation of human kidney myofibroblasts and their precursors at high resolution. Finally, we used this strategy to detect potential therapeutic targets, and identified NKD2 as a myofibroblast-specific target in human kidney fibrosis.


Asunto(s)
Linaje de la Célula , Fibrosis/patología , Túbulos Renales/patología , Miofibroblastos/patología , Insuficiencia Renal Crónica/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Masculino , Mesodermo/citología , Mesodermo/patología , Ratones , Miofibroblastos/metabolismo , Pericitos/citología , Pericitos/patología , RNA-Seq , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Análisis de la Célula Individual , Transcriptoma
5.
Am J Pathol ; 194(5): 641-655, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38309427

RESUMEN

Alport syndrome is an inherited kidney disease, which can lead to glomerulosclerosis and fibrosis, as well as end-stage kidney disease in children and adults. Platelet-derived growth factor-D (PDGF-D) mediates glomerulosclerosis and interstitial fibrosis in various models of kidney disease, prompting investigation of its role in a murine model of Alport syndrome. In vitro, PDGF-D induced proliferation and profibrotic activation of conditionally immortalized human parietal epithelial cells. In Col4a3-/- mice, a model of Alport syndrome, PDGF-D mRNA and protein were significantly up-regulated compared with non-diseased wild-type mice. To analyze the therapeutic potential of PDGF-D inhibition, Col4a3-/- mice were treated with a PDGF-D neutralizing antibody. Surprisingly, PDGF-D antibody treatment had no effect on renal function, glomerulosclerosis, fibrosis, or other indices of kidney injury compared with control treatment with unspecific IgG. To characterize the role of PDGF-D in disease development, Col4a3-/- mice with a constitutive genetic deletion of Pdgfd were generated and analyzed. No difference in pathologic features or kidney function was observed in Col4a3-/-Pdgfd-/- mice compared with Col4a3-/-Pdgfd+/+ littermates, confirming the antibody treatment data. Mechanistically, lack of proteolytic PDGF-D activation in Col4a3-/- mice might explain the lack of effects in vivo. In conclusion, despite its established role in kidney fibrosis, PDGF-D, without further activation, does not mediate the development and progression of Alport syndrome in mice.


Asunto(s)
Nefritis Hereditaria , Animales , Ratones , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Fibrosis , Riñón/patología , Ratones Noqueados , Nefritis Hereditaria/genética , Nefritis Hereditaria/metabolismo , Nefritis Hereditaria/patología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Factor de Crecimiento Derivado de Plaquetas/uso terapéutico
6.
Mol Syst Biol ; 20(2): 57-74, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177382

RESUMEN

Although clinical applications represent the next challenge in single-cell genomics and digital pathology, we still lack computational methods to analyze single-cell or pathomics data to find sample-level trajectories or clusters associated with diseases. This remains challenging as single-cell/pathomics data are multi-scale, i.e., a sample is represented by clusters of cells/structures, and samples cannot be easily compared with each other. Here we propose PatIent Level analysis with Optimal Transport (PILOT). PILOT uses optimal transport to compute the Wasserstein distance between two individual single-cell samples. This allows us to perform unsupervised analysis at the sample level and uncover trajectories or cellular clusters associated with disease progression. We evaluate PILOT and competing approaches in single-cell genomics or pathomics studies involving various human diseases with up to 600 samples/patients and millions of cells or tissue structures. Our results demonstrate that PILOT detects disease-associated samples from large and complex single-cell or pathomics data. Moreover, PILOT provides a statistical approach to find changes in cell populations, gene expression, and tissue structures related to the trajectories or clusters supporting interpretation of predictions.


Asunto(s)
Algoritmos , Genómica , Humanos , Análisis por Conglomerados , Genómica/métodos
7.
BMC Bioinformatics ; 25(1): 98, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443821

RESUMEN

BACKGROUND: Pathomics facilitates automated, reproducible and precise histopathology analysis and morphological phenotyping. Similar to molecular omics, pathomics datasets are high-dimensional, but also face large outlier variability and inherent data missingness, making quick and comprehensible data analysis challenging. To facilitate pathomics data analysis and interpretation as well as support a broad implementation we developed tRigon (Toolbox foR InteGrative (path-)Omics data aNalysis), a Shiny application for fast, comprehensive and reproducible pathomics analysis. RESULTS: tRigon is available via the CRAN repository ( https://cran.r-project.org/web/packages/tRigon ) with its source code available on GitLab ( https://git-ce.rwth-aachen.de/labooratory-ai/trigon ). The tRigon package can be installed locally and its application can be executed from the R console via the command 'tRigon::run_tRigon()'. Alternatively, the application is hosted online and can be accessed at https://labooratory.shinyapps.io/tRigon . We show fast computation of small, medium and large datasets in a low- and high-performance hardware setting, indicating broad applicability of tRigon. CONCLUSIONS: tRigon allows researchers without coding abilities to perform exploratory feature analyses of pathomics and non-pathomics datasets on their own using a variety of hardware.


Asunto(s)
Aplicaciones Móviles , Análisis de Datos
8.
Kidney Int ; 106(2): 185-188, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032963

RESUMEN

Acute kidney injury is still associated with high morbidity and mortality. Reichardt et al. investigated DNA-binding protein-A (Ybx3) in acute kidney injury induced by ischemia-reperfusion injury and found that mice lacking Ybx3 have altered mitochondrial function and increased antioxidant activity, making them more resistant to ischemia-reperfusion injury-acute kidney injury. The study highlights a new role of the multifaceted protein DNA-binding protein-A, which could be potentially therapeutically exploited.


Asunto(s)
Lesión Renal Aguda , Células Epiteliales , Túbulos Renales , Daño por Reperfusión , Animales , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/etiología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Ratones , Túbulos Renales/metabolismo , Túbulos Renales/patología , Túbulos Renales/citología , Humanos , Mitocondrias/metabolismo , Estrés Oxidativo
9.
Kidney Int ; 105(5): 1035-1048, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38395410

RESUMEN

Desmosomes are multi-protein cell-cell adhesion structures supporting cell stability and mechanical stress resilience of tissues, best described in skin and heart. The kidney is exposed to various mechanical stimuli and stress, yet little is known about kidney desmosomes. In healthy kidneys, we found desmosomal proteins located at the apical-junctional complex in tubular epithelial cells. In four different animal models and patient biopsies with various kidney diseases, desmosomal components were significantly upregulated and partly miss-localized outside of the apical-junctional complexes along the whole lateral tubular epithelial cell membrane. The most upregulated component was desmoglein-2 (Dsg2). Mice with constitutive tubular epithelial cell-specific deletion of Dsg2 developed normally, and other desmosomal components were not altered in these mice. When challenged with different types of tubular epithelial cell injury (unilateral ureteral obstruction, ischemia-reperfusion, and 2,8-dihydroxyadenine crystal nephropathy), we found increased tubular epithelial cell apoptosis, proliferation, tubular atrophy, and inflammation compared to wild-type mice in all models and time points. In vitro, silencing DSG2 via siRNA weakened cell-cell adhesion in HK-2 cells and increased cell death. Thus, our data show a prominent upregulation of desmosomal components in tubular cells across species and diseases and suggest a protective role of Dsg2 against various injurious stimuli.


Asunto(s)
Desmosomas , Enfermedades Renales , Animales , Humanos , Ratones , Adhesión Celular , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmosomas/metabolismo , Corazón , Enfermedades Renales/genética , Enfermedades Renales/metabolismo
10.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37939855

RESUMEN

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Asunto(s)
Proteínas Portadoras , Colestasis , Enfermedades Renales , Hepatopatías , Glicoproteínas de Membrana , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Humanos , Ratones , Animales , Colestasis/complicaciones , Colestasis/metabolismo , Riñón/metabolismo , Simportadores/metabolismo , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Conductos Biliares/metabolismo , Hepatopatías/metabolismo , Sodio
11.
Am J Pathol ; 193(2): 138-147, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36414084

RESUMEN

In chronic kidney disease (CKD), peritubular capillaries undergo anatomic and functional alterations, such as rarefaction and increased permeability. The endothelial glycocalyx (EG) is a carbohydrate-rich gel-like mesh, which covers the luminal surface of endothelial cells. It is involved in many regulatory functions of the endothelium, including vascular permeability. Herein, we investigated ultrastructural alterations of the EG in different murine CKD models. Fluorescence staining using different lectins with high affinity to components of the renal glycocalyx revealed a reduced binding to the endothelium in CKD in the animal models, and there were similar finding in human kidney specimens. Lanthanum Dysprosium Glycosamino Glycan adhesion staining technique was used to visualize the ultrastructure of the glycocalyx in transmission electron microscopy. This also enabled quantitative analyses, showing a significant reduction of the EG thickness and density. In addition, mRNA expression of proteins involved in glycocalyx biology, synthesis, and turnover (ie, syndecan 1 and glypican 1), which are main components of the glycocalyx, and exostosin 2, involved in the synthesis of the glycocalyx, were significantly up-regulated in endothelial cells isolated from murine CKD models. Visualization of glycocalyx using specific transmission electron microscopy analyses allows qualitative and quantitative analyses and revealed significant pathologic alterations in peritubular capillaries in CKD.


Asunto(s)
Capilares , Insuficiencia Renal Crónica , Ratones , Humanos , Animales , Células Endoteliales/metabolismo , Glicocálix/metabolismo , Endotelio Vascular/metabolismo , Insuficiencia Renal Crónica/metabolismo , Modelos Animales de Enfermedad
12.
Am J Pathol ; 193(1): 73-83, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309103

RESUMEN

Convolutional neural network (CNN)-based image analysis applications in digital pathology (eg, tissue segmentation) require a large amount of annotated data and are mostly trained and applicable on a single stain. Here, a novel concept based on stain augmentation is proposed to develop stain-independent CNNs requiring only one annotated stain. In this benchmark study on stain independence in digital pathology, this approach is comprehensively compared with state-of-the-art techniques including image registration and stain translation, and several modifications thereof. A previously developed CNN for segmentation of periodic acid-Schiff-stained kidney histology was used and applied to various immunohistochemical stainings. Stain augmentation showed very high performance in all evaluated stains and outperformed all other techniques in all structures and stains. Without the need for additional annotations, it enabled segmentation on immunohistochemical stainings with performance nearly comparable to that of the annotated periodic acid-Schiff stain and could further uphold performance on several held-out stains not seen during training. Herein, examples of how this framework can be applied for compartment-specific quantification of immunohistochemical stains for inflammation and fibrosis in animal models and patient biopsy specimens are presented. The results show that stain augmentation is a highly effective approach to enable stain-independent applications of deep-learning segmentation algorithms. This opens new possibilities for broad implementation in digital pathology.


Asunto(s)
Aprendizaje Profundo , Colorantes , Ácido Peryódico , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/patología
13.
Curr Opin Nephrol Hypertens ; 33(3): 291-297, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38411024

RESUMEN

PURPOSE OF REVIEW: Nephropathology is increasingly incorporating computational methods to enhance research and diagnostic accuracy. The widespread adoption of digital pathology, coupled with advancements in deep learning, will likely transform our pathology practices. Here, we discuss basic concepts of deep learning, recent applications in nephropathology, current challenges in implementation and future perspectives. RECENT FINDINGS: Deep learning models have been developed and tested in various areas of nephropathology, for example, predicting kidney disease progression or diagnosing diseases based on imaging and clinical data. Despite their promising potential, challenges remain that hinder a wider adoption, for example, the lack of prospective evidence and testing in real-world scenarios. SUMMARY: Deep learning offers great opportunities to improve quantitative and qualitative kidney histology analysis for research and clinical nephropathology diagnostics. Although exciting approaches already exist, the potential of deep learning in nephropathology is only at its beginning and we can expect much more to come.


Asunto(s)
Aprendizaje Profundo , Enfermedades Renales , Humanos , Riñón/patología , Enfermedades Renales/diagnóstico , Enfermedades Renales/terapia , Enfermedades Renales/patología , Predicción
14.
Circ Res ; 130(6): 814-828, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35130718

RESUMEN

BACKGROUND: In patients with chronic kidney disease (CKD), atrial fibrillation (AF) is highly prevalent and represents a major risk factor for stroke and death. CKD is associated with atrial proarrhythmic remodeling and activation of the sympathetic nervous system. Whether reduction of the sympathetic nerve activity by renal denervation (RDN) inhibits AF vulnerability in CKD is unknown. METHODS: Left atrial (LA) fibrosis was analyzed in samples from patients with AF and concomitant CKD (estimated glomerular filtration rate [eGFR], <60 mL/min per 1.73 m2) using picrosirius red and compared with AF patients without CKD and patients with sinus rhythm with and without CKD. In a translational approach, male Sprague Dawley rats were fed with 0.25% adenine (AD)-containing chow for 16 weeks to induce CKD. At week 5, AD-fed rats underwent RDN or sham operation (AD). Rats on normal chow served as control. After 16 weeks, cardiac function and AF susceptibility were assessed by echocardiography, radiotelemetry, electrophysiological mapping, and burst stimulation, respectively. LA tissue was histologically analyzed for sympathetic innervation using tyrosine hydroxylase staining, and LA fibrosis was determined using picrosirius red. RESULTS: Sirius red staining demonstrated significantly increased LA fibrosis in patients with AF+CKD compared with AF without CKD or sinus rhythm. In rats, AD demonstrated LA structural changes with enhanced sympathetic innervation compared with control. In AD, LA enlargement was associated with prolonged duration of induced AF episodes, impaired LA conduction latency, and increased absolute conduction inhomogeneity. RDN treatment improved LA remodeling and reduced LA diameter compared with sham-operated AD. Furthermore, RDN decreased AF susceptibility and ameliorated LA conduction latency and absolute conduction inhomogeneity, independent of blood pressure reduction and renal function. CONCLUSIONS: In an experimental rat model of CKD, RDN inhibited progression of atrial structural and electrophysiological remodeling. Therefore, RDN represents a potential therapeutic tool to reduce the risk of AF in CKD, independent of changes in renal function and blood pressure.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Insuficiencia Renal Crónica , Animales , Fibrilación Atrial/etiología , Fibrilación Atrial/prevención & control , Desnervación , Femenino , Fibrosis , Humanos , Riñón/patología , Masculino , Ratas , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/complicaciones
15.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33798093

RESUMEN

The c-Jun N-terminal kinase (JNK) signaling pathway mediates adaptation to stress signals and has been associated with cell death, cell proliferation, and malignant transformation in the liver. However, up to now, its function was experimentally studied mainly in young mice. By generating mice with combined conditional ablation of Jnk1 and Jnk2 in liver parenchymal cells (LPCs) (JNK1/2LPC-KO mice; KO, knockout), we unraveled a function of the JNK pathway in the regulation of liver homeostasis during aging. Aging JNK1/2LPC-KO mice spontaneously developed large biliary cysts that originated from the biliary cell compartment. Mechanistically, we could show that cyst formation in livers of JNK1/2LPC-KO mice was dependent on receptor-interacting protein kinase 1 (RIPK1), a known regulator of cell survival, apoptosis, and necroptosis. In line with this, we showed that RIPK1 was overexpressed in the human cyst epithelium of a subset of patients with polycystic liver disease. Collectively, these data reveal a functional interaction between JNK signaling and RIPK1 in age-related progressive cyst development. Thus, they provide a functional linkage between stress adaptation and programmed cell death (PCD) in the maintenance of liver homeostasis during aging.


Asunto(s)
Envejecimiento/metabolismo , Enfermedades de los Conductos Biliares/etiología , Enfermedades de los Conductos Biliares/metabolismo , Caspasa 8/metabolismo , Quistes/etiología , Quistes/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Animales , Apoptosis , Biopsia , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inmunohistoquímica , Inmunofenotipificación , Hepatopatías/etiología , Hepatopatías/metabolismo , Ratones , Proteína Quinasa 8 Activada por Mitógenos/deficiencia , Necroptosis
16.
J Am Soc Nephrol ; 34(2): 241-257, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351762

RESUMEN

BACKGROUND: FSGS is the final common pathway to nephron loss in most forms of severe or progressive glomerular injury. Although podocyte injury initiates FSGS, parietal epithelial cells (PECs) are the main effectors. Because PDGF takes part in fibrotic processes, we hypothesized that the ligand PDGF-B and its receptor PDGFR- ß participate in the origin and progression of FSGS. METHODS: We challenged Thy1.1 transgenic mice, which express Thy1.1 in the podocytes, with anti-Thy1.1 antibody to study the progression of FSGS. We investigated the role of PDGF in FSGS using challenged Thy1.1 mice, 5/6 nephrectomized mice, Col4 -/- (Alport) mice, patient kidney biopsies, and primary murine PECs, and challenged Thy1.1 mice treated with neutralizing anti-PDGF-B antibody therapy. RESULTS: The unchallenged Thy1.1 mice developed only mild spontaneous FSGS, whereas challenged mice developed progressive FSGS accompanied by a decline in kidney function. PEC activation, proliferation, and profibrotic phenotypic switch drove the FSGS. During disease, PDGF-B was upregulated in podocytes, whereas PDGFR- ß was upregulated in PECs from both mice and patients with FSGS. Short- and long-term treatment with PDGF-B neutralizing antibody improved kidney function and reduced FSGS, PEC proliferation, and profibrotic activation. In vitro , stimulation of primary murine PECs with PDGF-B recapitulated in vivo findings with PEC activation and proliferation, which was inhibited by PDGF-B antibody or imatinib. CONCLUSION: PDGF-B-PDGFR- ß molecular crosstalk between podocytes and PECs drives glomerulosclerosis and the progression of FSGS. PODCAST: This article contains a podcast at.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Podocitos , Ratones , Animales , Glomeruloesclerosis Focal y Segmentaria/patología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Glomérulos Renales/patología , Podocitos/metabolismo , Células Epiteliales/metabolismo , Ratones Transgénicos
17.
J Am Soc Nephrol ; 34(9): 1513-1520, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37428955

RESUMEN

SIGNIFICANCE STATEMENT: We hypothesized that triple therapy with inhibitors of the renin-angiotensin system (RAS), sodium-glucose transporter (SGLT)-2, and the mineralocorticoid receptor (MR) would be superior to dual RAS/SGLT2 blockade in attenuating CKD progression in Col4a3 -deficient mice, a model of Alport syndrome. Late-onset ramipril monotherapy or dual ramipril/empagliflozin therapy attenuated CKD and prolonged overall survival by 2 weeks. Adding the nonsteroidal MR antagonist finerenone extended survival by 4 weeks. Pathomics and RNA sequencing revealed significant protective effects on the tubulointerstitium when adding finerenone to RAS/SGLT2 inhibition. Thus, triple RAS/SGLT2/MR blockade has synergistic effects and might attenuate CKD progression in patients with Alport syndrome and possibly other progressive chronic kidney disorders. BACKGROUND: Dual inhibition of the renin-angiotensin system (RAS) plus sodium-glucose transporter (SGLT)-2 or the mineralocorticoid receptor (MR) demonstrated additive renoprotective effects in large clinical trials. We hypothesized that triple therapy with RAS/SGLT2/MR inhibitors would be superior to dual RAS/SGLT2 blockade in attenuating CKD progression. METHODS: We performed a preclinical randomized controlled trial (PCTE0000266) in Col4a3 -deficient mice with established Alport nephropathy. Treatment was initiated late (age 6 weeks) in mice with elevated serum creatinine and albuminuria and with glomerulosclerosis, interstitial fibrosis, and tubular atrophy. We block-randomized 40 male and 40 female mice to either nil (vehicle) or late-onset food admixes of ramipril monotherapy (10 mg/kg), ramipril plus empagliflozin (30 mg/kg), or ramipril plus empagliflozin plus finerenone (10 mg/kg). Primary end point was mean survival. RESULTS: Mean survival was 63.7±10.0 days (vehicle), 77.3±5.3 days (ramipril), 80.3±11.0 days (dual), and 103.1±20.3 days (triple). Sex did not affect outcome. Histopathology, pathomics, and RNA sequencing revealed that finerenone mainly suppressed the residual interstitial inflammation and fibrosis despite dual RAS/SGLT2 inhibition. CONCLUSION: Experiments in mice suggest that triple RAS/SGLT2/MR blockade may substantially improve renal outcomes in Alport syndrome and possibly other progressive CKDs because of synergistic effects on the glomerular and tubulointerstitial compartments.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefritis Hereditaria , Insuficiencia Renal Crónica , Animales , Femenino , Masculino , Ratones , Antihipertensivos/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fibrosis , Proteínas Facilitadoras del Transporte de la Glucosa/farmacología , Proteínas Facilitadoras del Transporte de la Glucosa/uso terapéutico , Nefritis Hereditaria/tratamiento farmacológico , Nefritis Hereditaria/genética , Nefritis Hereditaria/patología , Ramipril/uso terapéutico , Receptores de Mineralocorticoides , Insuficiencia Renal Crónica/tratamiento farmacológico , Sistema Renina-Angiotensina , Sodio , Transportador 2 de Sodio-Glucosa/farmacología , Transportador 2 de Sodio-Glucosa/uso terapéutico
18.
J Cell Mol Med ; 27(9): 1192-1205, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37056054

RESUMEN

Chronic kidney diseases affect a substantial percentage of the adult population worldwide. This observation emphasizes the need for novel insights into the molecular mechanisms that control the onset and progression of renal diseases. Recent advances in genomics have uncovered a previously unanticipated link between the non-coding genome and human kidney diseases. Here we screened and analysed long non-coding RNAs (lncRNAs) previously identified in mouse kidneys by genome-wide transcriptomic analysis, for conservation in humans and differential expression in renal tissue from healthy and diseased individuals. Our data suggest that LINC01187 is strongly down-regulated in human kidney tissues of patients with diabetic nephropathy and rapidly progressive glomerulonephritis, as well as in murine models of kidney diseases, including unilateral ureteral obstruction, nephrotoxic serum-induced glomerulonephritis and ischemia/reperfusion. Interestingly, LINC01187 overexpression in human kidney cells in vitro inhibits cell death indicating an anti-apoptotic function. Collectively, these data suggest a negative association of LINC01187 expression with renal diseases implying a potential protective role.


Asunto(s)
Nefropatías Diabéticas , Glomerulonefritis , ARN Largo no Codificante , Animales , Humanos , Ratones , Nefropatías Diabéticas/metabolismo , Regulación hacia Abajo/genética , Glomerulonefritis/metabolismo , Riñón/metabolismo , ARN Largo no Codificante/metabolismo
19.
Kidney Int ; 104(1): 36-45, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37001557

RESUMEN

Preclinical tests in animal models are key steps in early drug development. Consequently, the International Society of Nephrology held a consensus meeting that connected experts in the global kidney community in order to provide guidance on optimal management of translational animal studies for the development of new drugs to treat kidney disease, entitled "TRANSFORM; TRAnslational Nephrology Science FOR new Medications." The meeting covered various themes, including the following: (i) selection of disease model; (ii) pharmacokinetics; (iii) interventions in late preclinical models; (iv) choice of animal; (v) statistical power; (vi) organoids and organ-on-a-chip models; and (vii) reporting of results. This guidance is the first to be provided on the optimal conduct of translational animal studies for the development of new drugs to treat kidney disease. These recommendations are designed to accelerate development of new drugs for efficacious treatment of kidney diseases, and to improve the prognosis and quality of life of patients with a variety of kidney diseases.


Asunto(s)
Enfermedades Renales , Nefrología , Animales , Consenso , Calidad de Vida , Sociedades Médicas , Enfermedades Renales/tratamiento farmacológico
20.
Angiogenesis ; 26(2): 233-248, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36371548

RESUMEN

A wide range of cardiac symptoms have been observed in COVID-19 patients, often significantly influencing the clinical outcome. While the pathophysiology of pulmonary COVID-19 manifestation has been substantially unraveled, the underlying pathomechanisms of cardiac involvement in COVID-19 are largely unknown. In this multicentre study, we performed a comprehensive analysis of heart samples from 24 autopsies with confirmed SARS-CoV-2 infection and compared them to samples of age-matched Influenza H1N1 A (n = 16), lymphocytic non-influenza myocarditis cases (n = 8), and non-inflamed heart tissue (n = 9). We employed conventional histopathology, multiplexed immunohistochemistry (MPX), microvascular corrosion casting, scanning electron microscopy, X-ray phase-contrast tomography using synchrotron radiation, and direct multiplexed measurements of gene expression, to assess morphological and molecular changes holistically. Based on histopathology, none of the COVID-19 samples fulfilled the established diagnostic criteria of viral myocarditis. However, quantification via MPX showed a significant increase in perivascular CD11b/TIE2 + -macrophages in COVID-19 over time, which was not observed in influenza or non-SARS-CoV-2 viral myocarditis patients. Ultrastructurally, a significant increase in intussusceptive angiogenesis as well as multifocal thrombi, inapparent in conventional morphological analysis, could be demonstrated. In line with this, on a molecular level, COVID-19 hearts displayed a distinct expression pattern of genes primarily coding for factors involved in angiogenesis and epithelial-mesenchymal transition (EMT), changes not seen in any of the other patient groups. We conclude that cardiac involvement in COVID-19 is an angiocentric macrophage-driven inflammatory process, distinct from classical anti-viral inflammatory responses, and substantially underappreciated by conventional histopathologic analysis. For the first time, we have observed intussusceptive angiogenesis in cardiac tissue, which we previously identified as the linchpin of vascular remodeling in COVID-19 pneumonia, as a pathognomic sign in affected hearts. Moreover, we identified CD11b + /TIE2 + macrophages as the drivers of intussusceptive angiogenesis and set forward a putative model for the molecular regulation of vascular alterations.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Miocarditis , Humanos , Remodelación Vascular , SARS-CoV-2 , Inflamación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda