Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Stroke ; 55(2): 484-493, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38126184

RESUMEN

Posterior reversible encephalopathy syndrome (PRES) is a clinical and radiological entity characterized by nonspecific symptomatology (eg, headache, visual disturbances, encephalopathy, and seizures) and classically cortical and subcortical vasogenic edema predominantly affecting the parietooccipital region. PRES etiologies are usually dichotomized into toxic PRES (eg, antineoplastic drugs, illicit drugs) and clinical condition-associated PRES (eg, acute hypertension, dysimmune disorders). Although the pathophysiology of PRES remains elusive, 2 main pathogenic hypotheses have been suggested: cerebral hyperperfusion due to acute hypertension and cerebral hypoperfusion related to endothelial dysfunction. Research into the pathogenesis of PRES has emerged through the development of animal models in the last decade. The motivation for developing a suitable PRES model is 2-fold: to fill in knowledge gaps of the pathophysiological mechanisms involved, and to open new perspectives for clinical assessment of pharmacological targets to improve therapeutic management of PRES. All current models of PRES have a hypertensive background, on which other triggers (acute hypertension, inflammatory, drug toxicity) have been added to address specific facets of PRES (eg, seizures). The initial model consisted in inducing a reduced uterine perfusion pressure that mimics preeclampsia, a leading cause of PRES. More recently, a model of stroke-prone spontaneously hypertensive rats on high-salt diet, originally developed for hypertensive small vessel disease and vascular cognitive impairment, has been studied in PRES. This review aims to discuss, depending on the research objective, the benefits and limitations of current experimental approaches and thus to define the desirable characteristics for studying the pathophysiology of PRES and developing new therapies.


Asunto(s)
Hipertensión , Síndrome de Leucoencefalopatía Posterior , Accidente Cerebrovascular , Ratas , Animales , Síndrome de Leucoencefalopatía Posterior/diagnóstico por imagen , Síndrome de Leucoencefalopatía Posterior/etiología , Síndrome de Leucoencefalopatía Posterior/patología , Imagen por Resonancia Magnética/efectos adversos , Hipertensión/complicaciones , Convulsiones , Accidente Cerebrovascular/complicaciones , Modelos Teóricos , Ratas Endogámicas SHR
2.
Psychiatry Clin Neurosci ; 78(4): 229-236, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38113307

RESUMEN

AIM: Recovery from stroke is adversely affected by neuropsychiatric complications, cognitive impairment, and functional disability. Better knowledge of their mutual relationships is required to inform effective interventions. Network theory enables the conceptualization of symptoms and impairments as dynamic and mutually interacting systems. We aimed to identify interactions of poststroke complications using network analysis in diverse stroke samples. METHODS: Data from 2185 patients were sourced from member studies of STROKOG (Stroke and Cognition Consortium), an international collaboration of stroke studies. Networks were generated for each cohort, whereby nodes represented neuropsychiatric symptoms, cognitive deficits, and disabilities on activities of daily living. Edges characterized associations between them. Centrality measures were used to identify hub items. RESULTS: Across cohorts, a single network of interrelated poststroke complications emerged. Networks exhibited dissociable depression, apathy, fatigue, cognitive impairment, and functional disability modules. Worry was the most central symptom across cohorts, irrespective of the depression scale used. Items relating to activities of daily living were also highly central nodes. Follow-up analysis in two studies revealed that individuals who worried had more densely connected networks than those free of worry (CASPER [Cognition and Affect after Stroke: Prospective Evaluation of Risks] study: S = 9.72, P = 0.038; SSS [Sydney Stroke Study]: S = 13.56, P = 0.069). CONCLUSION: Neuropsychiatric symptoms are highly interconnected with cognitive deficits and functional disabilities resulting from stroke. Given their central position and high level of connectedness, worry and activities of daily living have the potential to drive multimorbidity and mutual reinforcement between domains of poststroke complications. Targeting these factors early after stroke may have benefits that extend to other complications, leading to better stroke outcomes.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Accidente Cerebrovascular , Humanos , Depresión/psicología , Actividades Cotidianas/psicología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Trastornos del Conocimiento/complicaciones , Disfunción Cognitiva/complicaciones , Cognición
3.
Alzheimers Dement ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193893

RESUMEN

INTRODUCTION: We investigated blood DNA methylation patterns associated with 15 well-established cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) pathophysiology, neuroinflammation, and neurodegeneration. METHODS: We assessed DNA methylation in 885 blood samples from the European Medical Information Framework for Alzheimer's Disease (EMIF-AD) study using the EPIC array. RESULTS: We identified Bonferroni-significant differential methylation associated with CSF YKL-40 (five loci) and neurofilament light chain (NfL; seven loci) levels, with two of the loci associated with CSF YKL-40 levels correlating with plasma YKL-40 levels. A co-localization analysis showed shared genetic variants underlying YKL-40 DNA methylation and CSF protein levels, with evidence that DNA methylation mediates the association between genotype and protein levels. Weighted gene correlation network analysis identified two modules of co-methylated loci correlated with several amyloid measures and enriched in pathways associated with lipoproteins and development. DISCUSSION: We conducted the most comprehensive epigenome-wide association study (EWAS) of AD-relevant CSF biomarkers to date. Future work should explore the relationship between YKL-40 genotype, DNA methylation, and protein levels in the brain. HIGHLIGHTS: Blood DNA methylation was assessed in the EMIF-AD MBD study. Epigenome-wide association studies (EWASs) were performed for 15 Alzheimer's disease (AD)-relevant cerebrospinal fluid (CSF) biomarker measures. Five Bonferroni-significant loci were associated with YKL-40 levels and seven with neurofilament light chain (NfL). DNA methylation in YKL-40 co-localized with previously reported genetic variation. DNA methylation potentially mediates the effect of single-nucleotide polymorphisms (SNPs) in YKL-40 on CSF protein levels.

4.
Alzheimers Dement ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193899

RESUMEN

INTRODUCTION: The established link between DNA methylation and pathophysiology of dementia, along with its potential role as a molecular mediator of lifestyle and environmental influences, positions blood-derived DNA methylation as a promising tool for early dementia risk detection. METHODS: In conjunction with an extensive array of machine learning techniques, we employed whole blood genome-wide DNA methylation data as a surrogate for 14 modifiable and non-modifiable factors in the assessment of dementia risk in independent dementia cohorts. RESULTS: We established a multivariate methylation risk score (MMRS) for identifying mild cognitive impairment cross-sectionally, independent of age and sex (P = 2.0 × 10-3). This score significantly predicted the prospective development of cognitive impairments in independent studies of Alzheimer's disease (hazard ratio for Rey's Auditory Verbal Learning Test (RAVLT)-Learning = 2.47) and Parkinson's disease (hazard ratio for MCI/dementia = 2.59). DISCUSSION: Our work shows the potential of employing blood-derived DNA methylation data in the assessment of dementia risk. HIGHLIGHTS: We used whole blood DNA methylation as a surrogate for 14 dementia risk factors. Created a multivariate methylation risk score for predicting cognitive impairment. Emphasized the role of machine learning and omics data in predicting dementia. The score predicts cognitive impairment development at the population level.

5.
Stroke ; 54(12): 3021-3029, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37901947

RESUMEN

BACKGROUND: White matter hyperintensities (WMH) are associated with cognitive dysfunction after ischemic stroke. Yet, uncertainty remains about affected domains, the role of other preexisting brain injury, and infarct types in the relation between WMH burden and poststroke cognition. We aimed to disentangle these factors in a large sample of patients with ischemic stroke from different cohorts. METHODS: We pooled and harmonized individual patient data (n=1568) from 9 cohorts, through the Meta VCI Map consortium (www.metavcimap.org). Included cohorts comprised patients with available magnetic resonance imaging and multidomain cognitive assessment <15 months poststroke. In this individual patient data meta-analysis, linear mixed models were used to determine the association between WMH volume and domain-specific cognitive functioning (Z scores; attention and executive functioning, processing speed, language and verbal memory) for the total sample and stratified by infarct type. Preexisting brain injury was accounted for in the multivariable models and all analyses were corrected for the study site as a random effect. RESULTS: In the total sample (67 years [SD, 11.5], 40% female), we found a dose-dependent inverse relationship between WMH volume and poststroke cognitive functioning across all 4 cognitive domains (coefficients ranging from -0.09 [SE, 0.04, P=0.01] for verbal memory to -0.19 [SE, 0.03, P<0.001] for attention and executive functioning). This relation was independent of acute infarct volume and the presence of lacunes and old infarcts. In stratified analyses, the relation between WMH volume and domain-specific functioning was also largely independent of infarct type. CONCLUSIONS: In patients with ischemic stroke, increasing WMH volume is independently associated with worse cognitive functioning across all major domains, regardless of old ischemic lesions and infarct type.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Femenino , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Accidente Cerebrovascular Isquémico/complicaciones , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Cognición , Estudios de Cohortes , Imagen por Resonancia Magnética , Lesiones Encefálicas/patología , Infarto/patología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Pruebas Neuropsicológicas
6.
Stroke ; 54(9): 2296-2303, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37551589

RESUMEN

BACKGROUND: Poststroke cognitive impairment (PSCI) occurs in about half of stroke survivors. Cumulative evidence indicates that functional outcomes of stroke are worse in women than men. Yet it is unknown whether the occurrence and characteristics of PSCI differ between men and women. METHODS: Individual patient data from 9 cohorts of patients with ischemic stroke were harmonized and pooled through the Meta-VCI-Map consortium (n=2343, 38% women). We included patients with visible symptomatic infarcts on computed tomography/magnetic resonance imaging and cognitive assessment within 15 months after stroke. PSCI was defined as impairment in ≥1 cognitive domains on neuropsychological assessment. Logistic regression analyses were performed to compare men to women, adjusted for study cohort, to obtain odds ratios for PSCI and individual cognitive domains. We also explored sensitivity and specificity of cognitive screening tools for detecting PSCI, according to sex (Mini-Mental State Examination, 4 cohorts, n=1814; Montreal Cognitive Assessment, 3 cohorts, n=278). RESULTS: PSCI was found in 51% of both women and men. Men had a lower risk of impairment of attention and executive functioning (men: odds ratio, 0.76 [95% CI, 0.61-0.96]), and language (men: odds ratio, 0.67 [95% CI, 0.45-0.85]), but a higher risk of verbal memory impairment (men: odds ratio, 1.43 [95% CI, 1.17-1.75]). The sensitivity of Mini-Mental State Examination (<25) for PSCI was higher for women (0.53) than for men (0.27; P=0.02), with a lower specificity for women (0.80) than men (0.96; P=0.01). Sensitivity and specificity of Montreal Cognitive Assessment (<26.) for PSCI was comparable between women and men (0.91 versus 0.86; P=0.62 and 0.29 versus 0.28; P=0.86, respectively). CONCLUSIONS: Sex was not associated with PSCI occurrence but affected domains differed between men and women. The latter may explain why sensitivity of the Mini-Mental State Examination for detecting PSCI was higher in women with a lower specificity compared with men. These sex differences need to be considered when screening for and diagnosing PSCI in clinical practice.


Asunto(s)
Disfunción Cognitiva , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Femenino , Masculino , Accidente Cerebrovascular Isquémico/complicaciones , Caracteres Sexuales , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/etiología , Accidente Cerebrovascular/epidemiología , Función Ejecutiva
7.
Mol Psychiatry ; 27(4): 1990-1999, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35173266

RESUMEN

Alzheimer's disease (AD) biomarkers represent several neurodegenerative processes, such as synaptic dysfunction, neuronal inflammation and injury, as well as amyloid pathology. We performed an exome-wide rare variant analysis of six AD biomarkers (ß-amyloid, total/phosphorylated tau, NfL, YKL-40, and Neurogranin) to discover genes associated with these markers. Genetic and biomarker information was available for 480 participants from two studies: EMIF-AD and ADNI. We applied a principal component (PC) analysis to derive biomarkers combinations, which represent statistically independent biological processes. We then tested whether rare variants in 9576 protein-coding genes associate with these PCs using a Meta-SKAT test. We also tested whether the PCs are intermediary to gene effects on AD symptoms with a SMUT test. One PC loaded on NfL and YKL-40, indicators of neuronal injury and inflammation. Four genes were associated with this PC: IFFO1, DTNB, NLRC3, and SLC22A10. Mediation tests suggest, that these genes also affect dementia symptoms via inflammation/injury. We also observed an association between a PC loading on Neurogranin, a marker for synaptic functioning, with GABBR2 and CASZ1, but no mediation effects. The results suggest that rare variants in IFFO1, DTNB, NLRC3, and SLC22A10 heighten susceptibility to neuronal injury and inflammation, potentially by altering cytoskeleton structure and immune activity disinhibition, resulting in an elevated dementia risk. GABBR2 and CASZ1 were associated with synaptic functioning, but mediation analyses suggest that the effect of these two genes on synaptic functioning is not consequential for AD development.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/genética , Biomarcadores , Proteína 1 Similar a Quitinasa-3/genética , Proteínas de Unión al ADN , Ácido Ditionitrobenzoico , Humanos , Inflamación/genética , Péptidos y Proteínas de Señalización Intercelular , Neurogranina/genética , Factores de Transcripción , Proteínas tau
8.
Alzheimers Dement ; 19(6): 2317-2331, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36464806

RESUMEN

INTRODUCTION: Despite increasing evidence of a role of rare genetic variation in the risk of Alzheimer's disease (AD), limited attention has been paid to its contribution to AD-related biomarker traits indicative of AD-relevant pathophysiological processes. METHODS: We performed whole-exome gene-based rare-variant association studies (RVASs) of 17 AD-related traits on whole-exome sequencing (WES) data generated in the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study (n = 450) and whole-genome sequencing (WGS) data from ADNI (n = 808). RESULTS: Mutation screening revealed a novel probably pathogenic mutation (PSEN1 p.Leu232Phe). Gene-based RVAS revealed the exome-wide significant contribution of rare coding variation in RBKS and OR7A10 to cognitive performance and protection against left hippocampal atrophy, respectively. DISCUSSION: The identification of these novel gene-trait associations offers new perspectives into the role of rare coding variation in the distinct pathophysiological processes culminating in AD, which may lead to identification of novel therapeutic and diagnostic targets.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico , Exoma/genética , Estudios de Asociación Genética , Fenotipo , Biomarcadores
9.
Stroke ; 53(11): 3446-3454, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35862196

RESUMEN

BACKGROUND: Imaging features derived from T1-weighted (T1w) images texture analysis were shown to be potential markers of poststroke cognitive impairment, with better sensitivity than atrophy measurement. However, in magnetic resonance images, the signal distribution is subject to variations and can limit transferability of the method between centers. This study examined the reliability of texture features against imaging settings using data from different centers. METHODS: Data were collected from 327 patients within the Stroke and Cognition Consortium from centers in France, Germany, Australia, and the United Kingdom. T1w images were preprocessed to normalize the signal intensities and then texture features, including first- and second-order statistics, were measured in the hippocampus and the entorhinal cortex. Differences between the data led to the use of 2 methods of analysis. First, a machine learning modeling, using random forest, was used to build a poststroke cognitive impairment prediction model using one dataset and this was validated on another dataset as external unseen data. Second, the predictive ability of the texture features was examined in the 2 remaining datasets by ANCOVA with false discovery rate correction for multiple comparisons. RESULTS: The prediction model had a mean accuracy of 90% for individual classification of patients in the learning base while for the validation base it was ≈ 77%. ANCOVA showed significant differences, in all datasets, for the kurtosis and inverse difference moment texture features when measured in patients with cognitive impairment and those without. CONCLUSIONS: These results suggest that texture features obtained from routine clinical MR images are robust early predictors of poststroke cognitive impairment and can be combined with other demographic and clinical predictors to build an accurate prediction model.


Asunto(s)
Disfunción Cognitiva , Imagen por Resonancia Magnética , Humanos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático
10.
Stroke ; 53(4): 1318-1327, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34775838

RESUMEN

BACKGROUND: Poststroke cognitive impairment is common, but the trajectory and magnitude of cognitive decline after stroke is unclear. We examined the course and determinants of cognitive change after stroke using individual participant data from the Stroke and Cognition Consortium. METHODS: Nine longitudinal hospital-based cohorts from 7 countries were included. Neuropsychological test scores and normative data were used to calculate standardized scores for global cognition and 5 cognitive domains. One-step individual participant data meta-analysis was used to examine the rate of change in cognitive function and risk factors for cognitive decline after stroke. Stroke-free controls were included to examine rate differences. Based on the literature and our own data that showed short-term improvement in cognitive function after stroke, key analyses were restricted to the period beginning 1-year poststroke to focus on its long-term effects. RESULTS: A total of 1488 patients (mean age, 66.3 years; SD, 11.1; 98% ischemic stroke) were followed for a median of 2.68 years (25th-75th percentile: 1.21-4.14 years). After an initial period of improvement through up to 1-year poststroke, decline was seen in global cognition and all domains except executive function after adjusting for age, sex, education, vascular risk factors, and stroke characteristics (-0.053 SD/year [95% CI, -0.073 to -0.033]; P<0.001 for global cognition). Recurrent stroke and older age were associated with faster decline. Decline was significantly faster in patients with stroke compared with controls (difference=-0.078 SD/year [95% CI, -0.11 to -0.045]; P<0.001 for global cognition in a subgroup analysis). CONCLUSIONS: Patients with stroke experience cognitive decline that is faster than that of stroke-free controls from 1 to 3 years after onset. An increased rate of decline is associated with older age and recurrent stroke.


Asunto(s)
Disfunción Cognitiva , Accidente Cerebrovascular , Anciano , Cognición , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/etiología , Función Ejecutiva , Humanos , Pruebas Neuropsicológicas
11.
Eur J Neurol ; 29(8): 2173-2180, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35460312

RESUMEN

BACKGROUND AND PURPOSE: Although several case series have described nitrous-oxide-associated neurological disorders, a comprehensive assessment of exposure characteristics (e.g., time to onset, level of exposure) in substance abusers has not been performed. The aim of this study was to describe the onset patterns of recreational use of nitrous-oxide-induced neurological disorders. METHODS: All cases of neurological disorders related to nitrous oxide recreational use reported to the Hauts-de-France addictovigilance center between January 2019 and August 2020 were selected. Only cases requiring hospitalization with informative data to perform the nitrous oxide causality assessment were included. RESULTS: A total of 20 cases from five hospitals were included. The male-to-female ratio was 6:1 and the median age was 19 years (range 16-34). The neurological presentation (myeloneuropathy 64%, 7/11; sensorimotor neuropathy 36%, 4/11) included for all patients gait disorders due to proprioceptive ataxia and limb hypoesthesia. The median dose used per occasion was 100 cartridges (range 5-960; n = 19). The median time from the start of nitrous oxide use to the onset of neurological symptoms was 6 months (range 0.7-54; n = 16). The cumulative dose was significantly higher in patients with damage to all four limbs than in patients with lower limb symptoms only (p = 0.042). CONCLUSIONS: A low intermittent exposure may be sufficient to cause neurological damage in some subjects, suggesting that, at the population level, there is no safe exposure to nitrous oxide in recreational settings. The severity of neurological impairment could increase once used at high doses and for prolonged durations of nitrous oxide.


Asunto(s)
Enfermedades del Sistema Nervioso , Enfermedades del Sistema Nervioso Periférico , Trastornos Relacionados con Sustancias , Adolescente , Adulto , Ataxia , Femenino , Humanos , Masculino , Óxido Nitroso/efectos adversos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Trastornos Relacionados con Sustancias/complicaciones , Vitamina B 12/efectos adversos , Adulto Joven
12.
Cerebrovasc Dis ; 51(2): 235-247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34569521

RESUMEN

BACKGROUND: Hemorrhagic transformation (HT) is a complication that occurs spontaneously or after thrombolysis in acute ischemic stroke (AIS) and can increase morbidity and mortality. The association of biomarkers with the risk of HT has been variably reported. We conducted a systematic review of the literature and meta-analysis and sought to compare blood biomarkers associated with HT and its subtypes by evaluating its predictability and correlation with outcome in AIS. METHODS: The study protocol was registered in the PROSPERO database (CRD42020201334) and adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Among 2,230 articles identified from Cochrane Library, PubMed, and Web of Science databases, 30 quality-appraised articles were found eligible. Meta-analysis was conducted for matrix metalloproteinase-9 (MMP-9), cellular fibronectin (c-Fn), ferritin, S100 calcium-binding protein B (S100B), and neutrophil-lymphocyte ratio (NLR). We also reviewed biomarkers for correlation with the functional outcome at 90 days from stroke onset (poor outcome modified Rankin scale >2). RESULTS: The pooled diagnostic odds ratio (DORpooled) was the highest for baseline c-Fn levels (299.253 [95% CI, 20.508-4,366.709]), followed by MMP-9 (DORpooled, 29.571 [95% CI 17.750-49.267]) and ferritin (DORpooled, 24.032 [95% CI 2.557-225.871]). However, wide confidence intervals for ferritin and c-Fn suggested lesser reliability of the markers. Patients with MMP-9 levels ≥140 ng/mL were 29.5 times at higher risk of developing symptomatic HT after AIS (area under the curve = 0.881). S100B (DORpooled, 6.286 [95% CI, 1.861-21.230]) and NLR (DORpooled, 5.036 [95% CI, 2.898-8.749]) had lower diagnostic accuracies. Among the markers not included for meta-analysis, caveolin-1, thrombin-activated fibrinolysis inhibitor, plasminogen activator inhibitor-1, and soluble ST2 were highly sensitive. Elevated levels of MMP-9, ferritin, and NLR were found to be associated with poor functional outcomes and mortality. CONCLUSION: Of the 5 biomarkers, there was enough evidence that MMP-9 has higher diagnostic accuracy for predicting the risk of HT before thrombolysis. MMP-9, ferritin, and NLR also predicted poor short-term outcomes.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Biomarcadores , Ferritinas , Hemorragia/complicaciones , Humanos , Metaloproteinasa 9 de la Matriz , Pronóstico , Reproducibilidad de los Resultados , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/terapia
13.
Alzheimers Dement ; 17(10): 1628-1640, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33991015

RESUMEN

INTRODUCTION: Neurofilament light (NfL), chitinase-3-like protein 1 (YKL-40), and neurogranin (Ng) are biomarkers for Alzheimer's disease (AD) to monitor axonal damage, astroglial activation, and synaptic degeneration, respectively. METHODS: We performed genome-wide association studies (GWAS) using DNA and cerebrospinal fluid (CSF) samples from the EMIF-AD Multimodal Biomarker Discovery study for discovery, and the Alzheimer's Disease Neuroimaging Initiative study for validation analyses. GWAS were performed for all three CSF biomarkers using linear regression models adjusting for relevant covariates. RESULTS: We identify novel genome-wide significant associations between DNA variants in TMEM106B and CSF levels of NfL, and between CPOX and YKL-40. We confirm previous work suggesting that YKL-40 levels are associated with DNA variants in CHI3L1. DISCUSSION: Our study provides important new insights into the genetic architecture underlying interindividual variation in three AD-related CSF biomarkers. In particular, our data shed light on the sequence of events regarding the initiation and progression of neuropathological processes relevant in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Biomarcadores/líquido cefalorraquídeo , Estudio de Asociación del Genoma Completo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Anciano , Proteína 1 Similar a Quitinasa-3/genética , Femenino , Humanos , Masculino , Proteínas de Neurofilamentos/genética , Neurogranina/líquido cefalorraquídeo
14.
Alzheimers Dement ; 17(9): 1452-1464, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33792144

RESUMEN

INTRODUCTION: This study sought to discover and replicate plasma proteomic biomarkers relating to Alzheimer's disease (AD) including both the "ATN" (amyloid/tau/neurodegeneration) diagnostic framework and clinical diagnosis. METHODS: Plasma proteins from 972 subjects (372 controls, 409 mild cognitive impairment [MCI], and 191 AD) were measured using both SOMAscan and targeted assays, including 4001 and 25 proteins, respectively. RESULTS: Protein co-expression network analysis of SOMAscan data revealed the relation between proteins and "N" varied across different neurodegeneration markers, indicating that the ATN variants are not interchangeable. Using hub proteins, age, and apolipoprotein E ε4 genotype discriminated AD from controls with an area under the curve (AUC) of 0.81 and MCI convertors from non-convertors with an AUC of 0.74. Targeted assays replicated the relation of four proteins with the ATN framework and clinical diagnosis. DISCUSSION: Our study suggests that blood proteins can predict the presence of AD pathology as measured in the ATN framework as well as clinical diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/sangre , Biomarcadores/sangre , Proteínas Sanguíneas , Proteómica , Proteínas tau/sangre , Anciano , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/patología , Apolipoproteína E4/sangre , Apolipoproteína E4/genética , Disfunción Cognitiva/sangre , Disfunción Cognitiva/patología , Europa (Continente) , Femenino , Humanos , Masculino , Persona de Mediana Edad
15.
Stroke ; 51(7): 2095-2102, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32568644

RESUMEN

BACKGROUND AND PURPOSE: Stroke is associated with an increased risk of dementia. To assist in the early identification of individuals at high risk of future dementia, numerous prediction models have been developed for use in the general population. However, it is not known whether such models also provide accurate predictions among stroke patients. Therefore, the aim of this study was to determine whether existing dementia risk prediction models that were developed for use in the general population can also be applied to individuals with a history of stroke to predict poststroke dementia with equivalent predictive validity. METHODS: Data were harmonized from 4 stroke studies (follow-up range, ≈12-18 months poststroke) from Hong Kong, the United States, the Netherlands, and France. Regression analysis was used to test 3 risk prediction models: the Cardiovascular Risk Factors, Aging and Dementia score, the Australian National University Alzheimer Disease Risk Index, and the Brief Dementia Screening Indicator. Model performance or discrimination accuracy was assessed using the C statistic or area under the curve. Calibration was tested using the Grønnesby and Borgan and the goodness-of-fit tests. RESULTS: The predictive accuracy of the models varied but was generally low compared with the original development cohorts, with the Australian National University Alzheimer Disease Risk Index (C-statistic, 0.66) and the Brief Dementia Screening Indicator (C-statistic, 0.61) both performing better than the Cardiovascular Risk Factors, Aging and Dementia score (area under the curve, 0.53). CONCLUSIONS: Dementia risk prediction models developed for the general population do not perform well in individuals with stroke. Their poor performance could have been due to the need for additional or different predictors related to stroke and vascular risk factors or methodological differences across studies (eg, length of follow-up, age distribution). Future work is needed to develop simple and cost-effective risk prediction models specific to poststroke dementia.


Asunto(s)
Demencia/epidemiología , Pruebas Neuropsicológicas , Accidente Cerebrovascular/complicaciones , Anciano , Estudios de Cohortes , Conjuntos de Datos como Asunto , Demencia/diagnóstico , Demencia/etiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Factores de Riesgo
16.
Stroke ; 51(6): 1640-1646, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32404039

RESUMEN

Background and Purpose- Type 2 diabetes mellitus (T2D) is associated with cognitive impairment and an increased risk of dementia, but the association between prediabetes and cognitive impairment is less clear, particularly in a setting of major cerebrovascular events. This article examines the impact of impaired fasting glucose and T2D on cognitive performance in a stroke population. Methods- Seven international observational studies from the STROKOG (Stroke and Cognition) consortium (n=1601; mean age, 66.0 years; 70% Asian, 26% white, and 2.6% African American) were included. Fasting glucose level (FGL) during hospitalization was used to define 3 groups, T2D (FGL ≥7.0 mmol/L), impaired fasting glucose (FGL 6.1-6.9 mmol/L), and normal (FGL <6.1 mmol/L), and a history of diabetes mellitus and the use of a diabetes mellitus medication were also used to support a diagnosis of T2D. Domain and global cognition Z scores were derived from standardized neuropsychological test scores. The cross-sectional association between glucose status and cognitive performance at 3 to 6 months poststroke was examined using linear mixed models, adjusting for age, sex, education, stroke type, ethnicity, and vascular risk factors. Results- Patients with T2D had significantly poorer performance in global cognition (SD, -0.59 [95% CI, -0.82 to -0.36]; P<0.001) and in all domains compared with patients with normal FGL. There was no significant difference between impaired fasting glucose patients and those with normal FGL in global cognition (SD, -0.10 [95% CI, -0.45 to 0.24]; P=0.55) or in any cognitive domain. Conclusions- Diabetes mellitus, but not prediabetes, is associated with poorer cognitive performance in patients 3 to 6 months after stroke.


Asunto(s)
Glucemia/metabolismo , Cognición , Complicaciones de la Diabetes , Diabetes Mellitus Tipo 2 , Estado Prediabético , Accidente Cerebrovascular , Anciano , Estudios Transversales , Complicaciones de la Diabetes/sangre , Complicaciones de la Diabetes/fisiopatología , Complicaciones de la Diabetes/terapia , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estado Prediabético/sangre , Estado Prediabético/tratamiento farmacológico , Estado Prediabético/fisiopatología , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia
17.
Neuroimage ; 222: 117155, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32736002

RESUMEN

Dynamic Functional Connectivity (dFC) in the resting state (rs) is considered as a correlate of cognitive processing. Describing dFC as a flow across morphing connectivity configurations, our notion of dFC speed quantifies the rate at which FC networks evolve in time. Here we probe the hypothesis that variations of rs dFC speed and cognitive performance are selectively interrelated within specific functional subnetworks. In particular, we focus on Sleep Deprivation (SD) as a reversible model of cognitive dysfunction. We found that whole-brain level (global) dFC speed significantly slows down after 24h of SD. However, the reduction in global dFC speed does not correlate with variations of cognitive performance in individual tasks, which are subtle and highly heterogeneous. On the contrary, we found strong correlations between performance variations in individual tasks -including Rapid Visual Processing (RVP, assessing sustained visual attention)- and dFC speed quantified at the level of functional sub-networks of interest. Providing a compromise between classic static FC (no time) and global dFC (no space), modular dFC speed analyses allow quantifying a different speed of dFC reconfiguration independently for sub-networks overseeing different tasks. Importantly, we found that RVP performance robustly correlates with the modular dFC speed of a characteristic frontoparietal module.


Asunto(s)
Atención/fisiología , Encéfalo/fisiopatología , Disfunción Cognitiva/fisiopatología , Conectoma , Memoria a Corto Plazo/fisiología , Red Nerviosa/fisiopatología , Desempeño Psicomotor/fisiología , Privación de Sueño/fisiopatología , Percepción Visual/fisiología , Adulto , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Humanos , Masculino , Red Nerviosa/diagnóstico por imagen , Privación de Sueño/diagnóstico por imagen , Factores de Tiempo
18.
Neuroimage ; 218: 116932, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32416226

RESUMEN

BACKGROUND: The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults. METHODS: Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1-90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session. RESULTS: Significant MRI site and vendor effects (p â€‹< â€‹.05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman's r correlations >0.43, p â€‹< â€‹1.39E-36). In particular, volumes larger than 200 â€‹mm3 (for amygdalar nuclei) and 300 â€‹mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε â€‹< â€‹5% and DICE â€‹> â€‹0.80). CONCLUSION: Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials.


Asunto(s)
Amígdala del Cerebelo/anatomía & histología , Hipocampo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/normas , Neuroimagen/normas , Programas Informáticos , Adulto , Anciano , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Masculino , Persona de Mediana Edad , Neuroimagen/métodos , Reproducibilidad de los Resultados
19.
Neurobiol Dis ; 139: 104846, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32205254

RESUMEN

BACKGROUND: Continuous compensation of dopamine represents an ideal symptomatic treatment for Parkinson's disease (PD). The feasibility in intracerebroventricular administration (i.c.v.) of dopamine previously failed because of unresolved dopamine oxidation. OBJECTIVES: We aim to test the feasibility, safety margins and efficacy of continuous i.c.v. of anaerobic-dopamine (A-dopamine) with a pilot translational study in a non-human primate model of PD. METHODS: Continuous and circadian i.c.v. of A-dopamine was administered through a micro-pump connected to a subcutaneous catheter implanted into the right frontal horn of 8 non-human primates treated with 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine (MPTP). A-dopamine was assessed at acute doses previously reported for dopamine as well as evaluating the long term therapeutic index of A-dopamine in comparison to anaerobically prepared L-dopa or methyl ester L-dopa. RESULTS: Over 60 days of a continuous circadian i.c.v. of A-dopamine improved motor symptoms (therapeutic index from 30 to 70 mg/day) without tachyphylaxia. No dyskinesia was observed even with very high doses. Death after 1 to 10 days (without neuronal alteration) was only observed with doses in excess of 160 mg whereas L-dopa i.c.v. was not effective at any dose. The technical feasibility of the administration regimen was confirmed for an anaerobic preparation of dopamine and for administration of a minimal infusion volume by micro-pump at a constant flow that prevented obstruction. CONCLUSION: Continuous circadian i.c.v. of A-dopamine appears to be feasible and shows efficacy without dyskinesia with a safe therapeutic index.


Asunto(s)
Dopamina/administración & dosificación , Infusiones Intraventriculares , Actividad Motora/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Antiparkinsonianos/farmacología , Modelos Animales de Enfermedad , Agonistas de Dopamina/farmacología , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Levodopa/análogos & derivados , Levodopa/farmacología , Macaca , Masculino , Trastornos Parkinsonianos/tratamiento farmacológico , Proyectos Piloto
20.
J Clin Psychopharmacol ; 40(3): 222-230, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32332458

RESUMEN

PURPOSE/BACKGROUND: Alzheimer disease (AD) is a public health issue because of the low number of symptomatic drugs and the difficulty to diagnose it at the prodromal stage. The need to develop new treatments and to validate sensitive tests for early diagnosis could be met by developing a challenge model reproducing cognitive impairments of AD. Therefore, we implemented a 24-hour sleep deprivation (SD) design on healthy volunteers in a randomized, double-blind, placebo-controlled, crossover study on 36 healthy volunteers. METHODS/PROCEDURE: To validate the SD model, cognitive tests were chosen to assess a transient worsening of cognitive functions after SD and a restoration under modafinil as positive control (one dose of 200 mg). Then, the same evaluations were replicated after 15 days of donepezil (5 mg/d) or memantine (10 mg/d). The working memory (WM) function was assessed by the N-back task and the rapid visual processing (RVP) task. FINDINGS/RESULTS: The accuracy of the N-back task and the reaction time of the RVP revealed the alteration of the WM with SD and its restoration with modafinil (changes in score after SD compared with baseline before SD), respectively, in the placebo group and in the modafinil group (-0.2% and +1.0% of satisfactory answers, P = 0.022; +21.3 and +1.9 milliseconds of reaction time, P = 0.025). Alzheimer disease drugs also tended to reverse this deterioration: the accuracy of the N-back task was more stable through SD (compared with -3.0% in the placebo group, respectively, in the memantine group and in the donepezil group: -1.4% and -1.6%, P = 0.027 and P = 0.092) and RVP reaction time was less impacted (compared with +41.3 milliseconds in the placebo group, respectively, in the memantine group and in the donepezil group: +16.1 and +29.3 milliseconds, P = 0.034 and P = 0.459). IMPLICATIONS/CONCLUSIONS: Our SD challenge model actually led to a worsening of WM that was moderated by both modafinil and AD drugs. To use this approach, the cognitive battery, the vulnerability of the subjects to SD, and the expected drug effect should be carefully considered.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Voluntarios Sanos/psicología , Memantina/uso terapéutico , Memoria a Corto Plazo/efectos de los fármacos , Privación de Sueño/psicología , Adulto , Enfermedad de Alzheimer/psicología , Estudios Cruzados , Donepezilo/uso terapéutico , Método Doble Ciego , Humanos , Masculino , Modafinilo/uso terapéutico , Modelos Psicológicos , Pruebas Neuropsicológicas , Nootrópicos/uso terapéutico , Tiempo de Reacción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda