RESUMEN
The National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling. This report includes a summary of each workshop session as well as a discussion of perspectives and challenges related to the use of 3D tissues in antiviral drug discovery.
Asunto(s)
Antivirales , Descubrimiento de Drogas , Antivirales/farmacología , Antivirales/uso terapéutico , BioensayoRESUMEN
BACKGROUND: Extracorporeal organ assist devices provide lifesaving functions for acutely and chronically ill patients suffering from respiratory and renal failure, but their availability and use is severely limited by an extremely high level of operational complexity. While current hollow fiber-based devices provide high-efficiency blood gas transfer and waste removal in extracorporeal membrane oxygenation (ECMO) and hemodialysis, respectively, their impact on blood health is often highly deleterious and difficult to control. Further challenges are encountered when integrating multiple organ support functions, as is often required when ECMO and ultrafiltration (UF) are combined to deal with fluid overload in critically ill patients, necessitating an unwieldy circuit containing two separate cartridges. METHODS: We report the first laboratory demonstration of simultaneous blood gas oxygenation and fluid removal in single microfluidic circuit, an achievement enabled by the microchannel-based blood flow configuration of the device. Porcine blood is flowed through a stack of two microfluidic layers, one with a non-porous, gas-permeable silicone membrane separating blood and oxygen chambers, and the other containing a porous dialysis membrane separating blood and filtrate compartments. RESULTS: High levels of oxygen transfer are measured across the oxygenator, while tunable rates of fluid removal, governed by the transmembrane pressure (TMP), are achieved across the UF layer. Key parameters including the blood flow rate, TMP and hematocrit are monitored and compared with computationally predicted performance metrics. CONCLUSIONS: These results represent a model demonstration of a potential future clinical therapy where respiratory support and fluid removal are both realized through a single monolithic cartridge.
Asunto(s)
Oxigenación por Membrana Extracorpórea , Microfluídica , Humanos , Oxigenación por Membrana Extracorpórea/métodos , Oxígeno , Hemodinámica/fisiología , SiliconasRESUMEN
The increasing prevalence of chronic lung disease worldwide, combined with the emergence of multiple pandemics arising from respiratory viruses over the past century, highlights the need for safer and efficacious means for providing artificial lung support. Mechanical ventilation is currently used for the vast majority of patients suffering from acute and chronic lung failure, but risks further injury or infection to the patient's already compromised lung function. Extracorporeal membrane oxygenation (ECMO) has emerged as a means of providing direct gas exchange with the blood, but limited access to the technology and the complexity of the blood circuit have prevented the broader expansion of its use. A promising avenue toward simplifying and minimizing complications arising from the blood circuit, microfluidics-based artificial organ support, has emerged over the past decade as an opportunity to overcome many of the fundamental limitations of the current standard for ECMO cartridges, hollow fiber membrane oxygenators. The power of microfluidics technology for this application stems from its ability to recapitulate key aspects of physiological microcirculation, including the small dimensions of blood vessel structures and gas transfer membranes. An even greater advantage of microfluidics, the ability to configure blood flow patterns that mimic the smooth, branching nature of vascular networks, holds the potential to reduce the incidence of clotting and bleeding and to minimize reliance on anticoagulants. Here, we summarize recent progress and address future directions and goals for this potentially transformative approach to artificial lung support.
Asunto(s)
Órganos Artificiales , Oxigenación por Membrana Extracorpórea , Oxigenación por Membrana Extracorpórea/efectos adversos , Oxigenación por Membrana Extracorpórea/métodos , Humanos , Pulmón , Microfluídica , Respiración ArtificialRESUMEN
Advances in microfluidics technologies have spurred the development of a new generation of microfluidic respiratory assist devices, constructed using microfabrication techniques capable of producing microchannel dimensions similar to those found in human capillaries and gas transfer films in the same thickness range as the alveolar membrane. These devices have been tested in laboratory settings and in some cases in extracorporeal animal experiments, yet none have been advanced to human clinical studies. A major challenge in the development of microfluidic oxygenators is the difficulty in scaling the technology toward high blood flows necessary to support adult humans; such scaling efforts are often limited by the complexity of the fabrication process and the manner in which blood is distributed in a three-dimensional network of microchannels. Conceptually, a central advantage of microfluidic oxygenators over existing hollow-fiber membrane-based configurations is the potential for shallower channels and thinner gas transfer membranes, features that reduce oxygen diffusion distances, to result in a higher gas transfer efficiency defined as the ratio of the volume of oxygen transferred to the blood per unit time to the active surface area of the gas transfer membrane. If this ratio is not significantly higher than values reported for hollow fiber membrane oxygenators (HFMO), then the expected advantage of the microfluidic approach would not be realized in practice, potentially due to challenges encountered in blood distribution strategies when scaling microfluidic designs to higher flow rates. Here, we report on scaling of a microfluidic oxygenator design from 4 to 92 mL/min blood flow, within an order of magnitude of the flow rate required for neonatal applications. This scaled device is shown to have a gas transfer efficiency higher than any other reported system in the literature, including other microfluidic prototypes and commercial HFMO cartridges. While the high oxygen transfer efficiency is a promising advance toward clinical scaling of a microfluidic architecture, it is accompanied by an excessive blood pressure drop in the circuit, arising from a combination of shallow gas transfer channels and equally shallow distribution manifolds. Therefore, next-generation microfluidic oxygenators will require novel design and fabrication strategies to minimize pressure drops while maintaining very high oxygen transfer efficiencies.
Asunto(s)
Cuidados Críticos , Microfluídica/instrumentación , Oxigenadores de Membrana , Diseño de Equipo , HumanosRESUMEN
The immune checkpoint blockade represents a revolution in cancer therapy, with the potential to increase survival for many patients for whom current treatments are not effective. However, response rates to current immune checkpoint inhibitors vary widely between patients and different types of cancer, and the mechanisms underlying these varied responses are poorly understood. Insights into the antitumor activities of checkpoint inhibitors are often obtained using syngeneic mouse models, which provide an in vivo preclinical basis for predicting efficacy in human clinical trials. Efforts to establish in vitro syngeneic mouse equivalents, which could increase throughput and permit real-time evaluation of lymphocyte infiltration and tumor killing, have been hampered by difficulties in recapitulating the tumor microenvironment in laboratory systems. Here, we describe a multiplex in vitro system that overcomes many of the deficiencies seen in current static histocultures, which we applied to the evaluation of checkpoint blockade in tumors derived from syngeneic mouse models. Our system enables both precision-controlled perfusion across biopsied tumor fragments and the introduction of checkpoint-inhibited tumor-infiltrating lymphocytes in a single experiment. Through real-time high-resolution confocal imaging and analytics, we demonstrated excellent correlations between in vivo syngeneic mouse and in vitro tumor biopsy responses to checkpoint inhibitors, suggesting the use of this platform for higher throughput evaluation of checkpoint efficacy as a tool for drug development.
Asunto(s)
Inhibidores de Puntos de Control Inmunológico/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Isoinjertos/inmunología , Isoinjertos/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Modelos Biológicos , Receptor de Muerte Celular Programada 1/inmunología , Microambiente Tumoral/inmunologíaRESUMEN
Animal models such as rats and primates provide body-wide information for drug and metabolite responses, including organ-specific toxicity and any unforeseen side effects on other organs. Although effective in the drug-screening process, their translatability to humans is limited because of the lack of high concordance and correlation among enzymatic mechanisms, cellular mechanisms, and resulting toxicities. A significant mode of failure for safety prediction in drug screening is hepatotoxicity, resulting in â¼30% of all safety-related drug failures and withdrawals from the market. The liver is a multifunctional organ with diverse metabolic, secretory, and inflammatory response roles and is essential for maintaining key body functions. Conventional cell culture platforms (such as multiwell plate cultures) and metabolic enzyme systems (microsomes, cytochrome P450 enzymes) have been routinely used to assess drug pharmacokinetics and metabolism. However, current in vitro models often fail to recapitulate the complexity and dynamic nature of human tissues, imposing a heavy reliance on in vivo testing using preclinical species that have metabolic processes, disease mechanisms, and modes of toxicity distinct from humans. Recently, microphysiological systems (MPS) have gained attention as powerful tools with the potential to generate human-relevant information that can supplant and fill the gap of knowledge between preclinical animal models and simpler, conventional in vitro cell culture systems. Developments in microfabrication technologies for generating complex microfluidic systems, along with the ability to establish and maintain multicellular models to capture dynamic, human-relevant behavior, have provided new avenues to generate such physiologically relevant systems. These MPS platforms, when designed and developed with in vivo-derived design parameters, have the potential to capture key aspects and better mimic organ functionality. In this review, we discuss developments in microtechnologies for fabricating, establishing, and maintaining hepatic cell culture systems, with a specific focus on models that aim to capture in vivo physiology in vitro. By designing microscale systems to impart specific in vivo physiologic parameters, it is possible to create a dynamic system that can capture multiple aspects of the hepatic microenvironment, bringing us closer to a comprehensive in vitro testing platform for hepatic responses and toxicities.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hepatocitos/metabolismo , Hígado/metabolismo , Microfluídica/métodos , Animales , HumanosRESUMEN
The emergence of microphysiologic epithelial lung models using human cells in a physiologically relevant microenvironment has the potential to be a powerful tool for preclinical drug development and to improve predictive power regarding in vivo drug clearance. In this study, an in vitro model of the airway comprising human primary lung epithelial cells cultured in a microfluidic platform was used to establish a physiologic state and to observe metabolic changes as a function of glucocorticoid exposure. Evaluation of mucus production rate and barrier function, along with lung-specific markers, demonstrated that the lungs maintained a differentiated phenotype. Initial concentrations of 100 nM hydrocortisone (HC) and 30 nM cortisone (C) were used to evaluate drug clearance and metabolite production. Measurements made using ultra-high-performance liquid chromatography and high-mass-accuracy mass spectrometry indicated that HC metabolism resulted in the production of C and dihydrocortisone (diHC). When the airway model was exposed to C, diHC was identified; however, no conversion to HC was observed. Multicompartmental modeling was used to characterize the lung bioreactor data, and pharmacokinetic parameters, including elimination clearance and elimination half-life, were estimated. Polymerse chain reaction data confirmed overexpression of 11-ß hydroxysteroid dehydrogenase 2 (11ßHSD2) over 11ßHSD1, which is biologically relevant to human lung. Faster metabolism was observed relative to a static model on elevated rates of C and diHC formation. Overall, our results demonstrate that this lung airway model has been successfully developed and could interact with other human tissues in vitro to better predict in vivo drug behavior.
Asunto(s)
Células Epiteliales/metabolismo , Glucocorticoides/metabolismo , Pulmón/metabolismo , Mucosa Respiratoria/metabolismo , Células Cultivadas , Cortisona/metabolismo , Semivida , Humanos , Hidrocortisona/metabolismoRESUMEN
One of the major challenges in treatment of auditory disorders is that many therapeutic compounds are toxic when delivered systemically. Local intracochlear delivery methods are becoming critical in emerging treatments and in drug discovery. Direct infusion via cochleostomy, in particular, is attractive from a pharmacokinetics standpoint, as there is potential for the kinetics of delivery to be well-controlled. Direct infusion is compatible with a large number of drug types, including large, complex molecules such as proteins and unstable molecules such as siRNA. In addition, hair-cell regeneration therapy will likely require long-term delivery of a timed series of agents. This presents unknown risks associated with increasing the volume of fluid within the cochlea and mechanical damage caused during delivery. There are three key requirements for an intracochlear drug delivery system: (1) a high degree of miniaturization (2) a method for pumping precise and small volumes of fluid into the cochlea in a highly controlled manner, and (3) a method for removing excess fluid from the limited cochlear fluid space. To that end, our group is developing a head-mounted microfluidics-based system for long-term intracochlear drug delivery. We utilize guinea pig animal models for development and demonstration of the device. Central to the system is an infuse-withdraw micropump component that, unlike previous micropump-based systems, has fully integrated drug and fluid storage compartments. Here we characterize the infuse-withdraw capabilities of our micropump, and show experimental results that demonstrate direct drug infusion via cochleostomy in animal models. We utilized DNQX, a glutamate receptor antagonist that suppresses CAPs, as a test drug. We monitored the frequency-dependent changes in auditory nerve CAPs during drug infusion, and observed CAP suppression consistent with the expected drug transport path based on the geometry and tonotopic organization of the cochlea.
Asunto(s)
Cóclea , Sistemas de Liberación de Medicamentos/instrumentación , Bombas de Infusión , Microfluídica/instrumentación , Animales , Cóclea/efectos de los fármacos , Vías de Administración de Medicamentos , Sistemas de Liberación de Medicamentos/métodos , Diseño de Equipo , Cobayas , Masculino , Microtecnología , Miniaturización , Quinoxalinas/administración & dosificaciónRESUMEN
Microfluidic membrane oxygenators are designed to mimic branching vasculature of the native lung during extracorporeal lung support. To date, scaling of such devices to achieve clinically relevant blood flow and lung support has been a limitation. We evaluated a novel multilayer microfluidic blood oxygenator (BLOx) capable of supporting 750-800 ml/min blood flow versus a standard hollow fiber membrane oxygenator (HFMO) in vivo during veno-venous extracorporeal life support for 24 hours in anesthetized, mechanically ventilated uninjured swine (n = 3/group). The objective was to assess feasibility, safety, and biocompatibility. Circuits remained patent and operated with stable pressures throughout 24 hours. No group differences in vital signs or evidence of end-organ damage occurred. No change in plasma free hemoglobin and von Willebrand factor multimer size distribution were observed. Platelet count decreased in BLOx at 6 hours (37% dec, P = 0.03), but not in HFMO; however, thrombin generation potential was elevated in HFMO (596 ± 81 nM·min) versus BLOx (323 ± 39 nM·min) at 24 hours ( P = 0.04). Other coagulation and inflammatory mediator results were unremarkable. BLOx required higher mechanical ventilator settings and showed lower gas transfer efficiency versus HFMO, but the stable device performance indicates that this technology is ready for further performance scaling and testing in lung injury models and during longer use conditions.
Asunto(s)
Estudios de Factibilidad , Oxigenadores de Membrana , Animales , Porcinos , Oxigenación por Membrana Extracorpórea/instrumentación , Oxigenación por Membrana Extracorpórea/métodos , Oxigenación por Membrana Extracorpórea/efectos adversos , Unidades de Cuidados Intensivos , Microfluídica/métodos , Microfluídica/instrumentaciónRESUMEN
The average cost to bring a new drug from its initial discovery to a patient's bedside is estimated to surpass $2 billion and requires over a decade of research and development. There is a need for new drug screening technologies that can parse drug candidates with increased likelihood of clinical utility early in development in order to increase the cost-effectiveness of this pipeline. For example, during the COVID-19 pandemic, resources were rapidly mobilized to identify effective therapeutic treatments but many lead antiviral compounds failed to demonstrate efficacy when progressed to human trials. To address the lack of predictive preclinical drug screening tools, PREDICT96-ALI, a high-throughput (n = 96) microphysiological system (MPS) that recapitulates primary human tracheobronchial tissue,is adapted for the evaluation of differential antiviral efficacy of native SARS-CoV-2 variants of concern. Here, PREDICT96-ALI resolves both the differential viral kinetics between variants and the efficacy of antiviral compounds over a range of drug doses. PREDICT96-ALI is able to distinguish clinically efficacious antiviral therapies like remdesivir and nirmatrelvir from promising lead compounds that do not show clinical efficacy. Importantly, results from this proof-of-concept study track with known clinical outcomes, demonstrate the feasibility of this technology as a prognostic drug discovery tool.
RESUMEN
Stereolithography based additive manufacturing ("3D printing") has become a useful tool for the development of novel microfluidic in vitro platforms. This method of manufacturing can reduce production time while allowing for rapid design iteration and complex monolithic structures. The platform described in this chapter has been designed for the capture and evaluation of cancer spheroids in perfusion. Spheroids are created in 3D Petri dishes, stained, and loaded into these 3D printed devices and imaged over time under flow conditions. This design allows for active perfusion into complex 3D cellular constructs resulting in longer viability while providing results which better mimic in vivo conditions compared to traditional monolayer static culture.
Asunto(s)
Técnicas de Cultivo de Célula , Neoplasias , Humanos , Técnicas de Cultivo de Célula/métodos , Impresión Tridimensional , Estereolitografía , PerfusiónRESUMEN
Nearly half of American adults suffer from gum disease, including mild inflammation of gingival tissue, known as gingivitis. Currently, advances in therapeutic treatments are hampered by a lack of mechanistic understanding of disease progression in physiologically relevant vascularized tissues. To address this, we present a high-throughput microfluidic organ-on-chip model of human gingival tissue containing keratinocytes, fibroblast and endothelial cells. We show the triculture model exhibits physiological tissue structure, mucosal barrier formation, and protein biomarker expression and secretion over several weeks. Through inflammatory cytokine administration, we demonstrate the induction of inflammation measured by changes in barrier function and cytokine secretion. These states of inflammation are induced at various time points within a stable culture window, providing a robust platform for evaluation of therapeutic agents. These data reveal that the administration of specific small molecule inhibitors mitigates the inflammatory response and enables tissue recovery, providing an opportunity for identification of new therapeutic targets for gum disease with the potential to facilitate relevant preclinical drug efficacy and toxicity testing.
Asunto(s)
Gingivitis , Microfluídica , Adulto , Humanos , Células Endoteliales , Citocinas , InflamaciónRESUMEN
The development of micro- and nanotechnology for biomedical applications has defined the cutting edge of medical technology for over three decades, as advancements in fabrication technology developed originally in the semiconductor industry have been applied to solving ever-more complex problems in medicine and biology. These technologies are ideally suited to interfacing with life sciences, since they are on the scale lengths as cells (microns) and biomacromolecules (nanometers). In this paper, we review the state of the art in bionanotechnology and bioMEMS (collectively BNM), including developments and challenges in the areas of BNM, such as microfluidic organ-on-chip devices, oral drug delivery, emerging technologies for managing infectious diseases, 3D printed microfluidic devices, AC electrokinetics, flexible MEMS devices, implantable microdevices, paper-based microfluidic platforms for cellular analysis, and wearable sensors for point-of-care testing.
Asunto(s)
Sistemas Microelectromecánicos , Sistemas de Liberación de Medicamentos , Microfluídica , Dispositivos Laboratorio en un Chip , NanotecnologíaRESUMEN
Recent global events such as COVID-19 pandemic amid rising rates of chronic lung diseases highlight the need for safer, simpler, and more available treatments for respiratory failure, with increasing interest in extracorporeal membrane oxygenation (ECMO). A key factor limiting use of this technology is the complexity of the blood circuit, resulting in clotting and bleeding and necessitating treatment in specialized care centers. Microfluidic oxygenators represent a promising potential solution, but have not reached the scale or performance required for comparison with conventional hollow fiber membrane oxygenators (HFMOs). Here the development and demonstration of the first microfluidic respiratory assist device at a clinical scale is reported, demonstrating efficient oxygen transfer at blood flow rates of 750 mL minâ»1 , the highest ever reported for a microfluidic device. The central innovation of this technology is a fully 3D branching network of blood channels mimicking key features of the physiological microcirculation by avoiding anomalous blood flows that lead to thrombus formation and blood damage in conventional oxygenators. Low, stable blood pressure drop, low hemolysis, and consistent oxygen transfer, in 24-hour pilot large animal experiments are demonstrated - a key step toward translation of this technology to the clinic for treatment of a range of lung diseases.
Asunto(s)
COVID-19 , Oxigenación por Membrana Extracorpórea , Animales , Humanos , Microfluídica , Pandemias , OxígenoRESUMEN
COVID-19 emerged as a worldwide pandemic in early 2020, and while the rapid development of safe and efficacious vaccines stands as an extraordinary achievement, the identification of effective therapeutics has been less successful. This process has been limited in part by a lack of human-relevant preclinical models compatible with therapeutic screening on the native virus, which requires a high-containment environment. Here, we report SARS-CoV-2 infection and robust viral replication in PREDICT96-ALI, a high-throughput, human primary cell-based organ-on-chip platform. We evaluate unique infection kinetic profiles across lung tissue from three human donors by immunofluorescence, RT-qPCR, and plaque assays over a 6-day infection period. Enabled by the 96 devices/plate throughput of PREDICT96-ALI, we also investigate the efficacy of Remdesivir and MPro61 in a proof-of-concept antiviral study. Both compounds exhibit an antiviral effect against SARS-CoV-2 in the platform. This demonstration of SARS-CoV-2 infection and antiviral dosing in a high-throughput organ-on-chip platform presents a critical capability for disease modeling and therapeutic screening applications in a human physiology-relevant in vitro system.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antivirales/farmacología , Pulmón , Replicación ViralRESUMEN
BACKGROUND: Hepatic stellate cells (HSC) play a major role in the progression of liver fibrosis. AIM: The aim of our study was to investigate whether rat HSC cultured on a nanofiber membrane (NM) retain their quiescent phenotype during both short- and long-term culture and whether activated HSC revert to a quiescent form when re-cultured on NM. METHODS: Rat HSC cultured for 1 day on plastic plates (PP) were used as quiescent HSC, while cells cultured for 1 week on PP were considered to be activated HSC. Quiescent or activated HSC were subsequently plated on PP or NM and cultured for an additional 4 days at which time their gene expression, stress fiber development, and growth factor production were determined. For long-term culture, HSC were grown on NM for 20 days and the cells then replated on PP and cultured for another 10 days. RESULTS: Expression of marker genes for HSC activation, stress fiber development, and growth factor production were significantly lower in both quiescent and activated HSC cultured on NM than in those cultured on PP. After long-term culture on NM, activation marker gene expression and stress fiber development were still significantly lower in HSC than in PP, and HSC still retained the ability to activate when replated onto PP. CONCLUSIONS: HSC cultured on NM retained quiescent characteristics after both short- and long-term culture while activated HSC reverted toward a quiescent state when cultured on NM. Cultures of HSC grown on NM are a useful in vitro model to investigate the mechanisms of activation and deactivation.
Asunto(s)
Células Estrelladas Hepáticas/citología , Nanofibras , Plásticos , Cultivo Primario de Células/instrumentación , Animales , Factores Biológicos/biosíntesis , Factores Biológicos/genética , Adhesión Celular , Movimiento Celular , Endotelina-1/genética , Perfilación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Cultivo Primario de Células/métodos , Ratas , Ratas Wistar , Fibras de Estrés/genética , Factores de Tiempo , Factor de Crecimiento Transformador beta2/genéticaRESUMEN
Extracorporeal membrane oxygenation (ECMO) has been advancing rapidly due to a combination of rising rates of acute and chronic lung diseases as well as significant improvements in the safety and efficacy of this therapeutic modality. However, the complexity of the ECMO blood circuit, and challenges with regard to clotting and bleeding, remain as barriers to further expansion of the technology. Recent advances in microfluidic fabrication techniques, devices, and systems present an opportunity to develop new solutions stemming from the ability to precisely maintain critical dimensions such as gas transfer membrane thickness and blood channel geometries, and to control levels of fluid shear within narrow ranges throughout the cartridge. Here, we present a physiologically inspired multilayer microfluidic oxygenator device that mimics physiologic blood flow patterns not only within individual layers but throughout a stacked device. Multiple layers of this microchannel device are integrated with a three-dimensional physiologically inspired distribution manifold that ensures smooth flow throughout the entire stacked device, including the critical entry and exit regions. We then demonstrate blood flows up to 200 ml/min in a multilayer device, with oxygen transfer rates capable of saturating venous blood, the highest of any microfluidic oxygenator, and a maximum blood flow rate of 480 ml/min in an eight-layer device, higher than any yet reported in a microfluidic device. Hemocompatibility and large animal studies utilizing these prototype devices are planned. Supplemental Visual Abstract, http://links.lww.com/ASAIO/A769.
Asunto(s)
Biomimética , Microfluídica , Animales , Diseño de Equipo , Oxígeno , OxigenadoresRESUMEN
One of the principal challenges in artificial lung technology has been the ability to provide levels of oxygen and carbon dioxide exchange that rival those of the natural human lung, while mitigating the deleterious interaction between blood and the surface of the synthetic gas exchange membrane. This interaction is exacerbated by the large oxygenator surface area required to achieve sufficient levels of gas transfer. In an effort to address this challenge, microfluidics-based artificial lung technologies comprising stacked microchannel networks have been explored by several groups. Here we report the design, fabrication and initial testing of a parallel plate multilayered silicone-based microfluidic construct containing ultrathin gas exchange membranes, aimed at maximizing gas transfer efficiency while minimizing membrane-blood contact area. The device comprises a branched microvascular network that provides controlled wall shear stress and uniform blood flow, and is designed to minimize blood damage, thrombosis and inflammatory responses seen in current oxygenators. Initial testing indicates that flow distribution through the multilayer structure is uniform and that the thin membrane can withstand pressures equivalent to those expected during operation. Oxygen transfer using phosphate buffered saline as the carrier fluid has also been assessed, demonstrating a sharp increase in oxygen transfer as membrane thickness is reduced, consistent with the expected values of oxygen permeance for thin silicone membranes.
Asunto(s)
Órganos Artificiales , Pulmón/fisiología , Técnicas Analíticas Microfluídicas/instrumentación , Oxígeno/química , Respiración , Biomimética , Dimetilpolisiloxanos/química , Diseño de Equipo , Pulmón/irrigación sanguínea , Membranas Artificiales , Microvasos , Permeabilidad , Siliconas/químicaRESUMEN
Microfluidic systems for the analysis of tissue models of cancer and other diseases are rapidly emerging, with an increasing recognition that perfusion is required to recapitulate critical aspects of the in vivo microenvironment. Here we report on the first application of 3D printing for the fabrication of monolithic devices suitable for capturing and imaging tumor spheroids under dynamic perfusion flow. Resolution of the printing process has been refined to a level sufficient to obtain high precision features that enable capture and retention of tumor spheroids in a perfusion flow stream that provides oxygen and nutrient requirements sufficient to sustain viability over several days. Use of 3D printing enables rapid design cycles, based on optimization of computational fluid dynamic analyses, much more rapidly than conventional techniques involving replica molding from photolithographic masters. Ultimately, these prototype design and fabrication approaches may be useful in generating highly multiplexed monolithic arrays capable of supporting rapid and efficient evaluation of therapeutic candidates in the cancer drug discovery process.