Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mem Inst Oswaldo Cruz ; 116: e210270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35195194

RESUMEN

Lipid droplets (LDs; lipid bodies) are intracellular sites of lipid storage and metabolism present in all cell types. Eukaryotic LDs are involved in eicosanoid production during several inflammatory conditions, including infection by protozoan parasites. In parasites, LDs play a role in the acquisition of cholesterol and other neutral lipids from the host. The number of LDs increases during parasite differentiation, and the biogenesis of these organelles use specific signaling pathways involving protein kinases. In addition, LDs are important in cellular protection against lipotoxicity. Recently, these organelles have been implicated in eicosanoid and specialised lipid metabolism. In this article, we revise the main functions of protozoan parasite LDs and discuss future directions in the comprehension of these organelles in the context of pathogen virulence.


Asunto(s)
Gotas Lipídicas , Parásitos , Animales , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Transducción de Señal , Virulencia
2.
Mem Inst Oswaldo Cruz ; 113(4): e170345, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29412342

RESUMEN

BACKGROUND: Leishmaniasis, one of the most neglected diseases, is a serious public health problem in many countries, including Brazil. Currently available treatments require long-term use and have serious side effects, necessitating the development of new therapeutic interventions. Because translocator protein (TSPO) levels are reduced in Leishmania amazonensis-infected cells and because this protein participates in apoptosis and immunomodulation, TSPO represents a potential target for Leishmania chemotherapy. The present study evaluated PK11195, a ligand of this protein, as an anti-leishmanial agent. OBJECTIVE: To evaluate the leishmanicidal activity of PK11195 against L. amazonensis in infected CBA mouse macrophages in vitro. METHODS: The viability of axenic L. amazonensis, Leishmania major, and Leishmania braziliensis promastigotes was assessed after 48 h treatment with PK11195 (0.2-400 µM). Additionally, intracellular parasite viability was evaluated to determine IC50 values and the number of viable parasites in infected macrophages treated with PK11195 (50-100 µM). Infected macrophages were then treated with PK11195 (25-100 µM) to determine the percentage of L. amazonensis-infected cells and the number of parasites per infected cell. Electron microscopy was used to investigate morphological changes caused by PK11195. The production of free oxygen radicals, nitric oxide, and pro-inflammatory cytokines was also evaluated in infected macrophages treated with PK11195 and primed or not primed with IFN-γ. FINDINGS: Median IC50 values for PK11195 were 14.2 µM for L. amazonensis, 8.2 µM for L. major, and 3.5 µM for L. braziliensis. The selective index value for L. amazonensis was 13.7, indicating the safety of PK11195 for future testing in mammals. Time- and dose-dependent reductions in the percentage of infected macrophages, the number of parasites per infected macrophage, and the number of viable intracellular parasites were observed. Electron microscopy revealed some morphological alterations suggestive of autophagy. Interestingly, MCP-1 and superoxide levels were reduced in L. amazonensis-infected macrophages treated with PK11195. MAIN CONCLUSIONS: PK11195 causes the killing of amastigotes in vitro by mechanisms independent of inflammatory mediators and causes morphological alterations within Leishmania parasites, suggestive of autophagy, at doses that are non-toxic to macrophages. Thus, this molecule has demonstrated potential as an anti-leishmanial agent.


Asunto(s)
Isoquinolinas/farmacología , Leishmania braziliensis/efectos de los fármacos , Leishmania major/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Macrófagos/parasitología , Animales , Leishmania braziliensis/ultraestructura , Leishmania major/ultraestructura , Leishmania mexicana/ultraestructura , Dosificación Letal Mediana , Ratones , Ratones Endogámicos CBA , Microscopía Electrónica de Transmisión , Pruebas de Sensibilidad Parasitaria , Factores de Tiempo
3.
Front Immunol ; 10: 1362, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316499

RESUMEN

CBA mice macrophages (MØ) control infection by Leishmania major and are susceptive to Leishmania amazonensis, suggesting that both parasite species induce distinct responses that play important roles in infection outcome. To evaluate the MØ responses to infection arising from these two Leishmania species, a proteomic study using a Multidimensional Protein Identification Technology (MudPIT) approach with liquid chromatography tandem mass spectrometry (LC-MS/MS) was carried out on CBA mice bone-marrow MØ (BMMØ). Following SEQUEST analysis, which revealed 2,838 proteins detected in BMMØ, data mining approach found six proteins significantly associated with the tested conditions. To investigate their biological significance, enrichment analysis was performed using Ingenuity Pathway Analysis (IPA). A three steps IPA approach revealed 4 Canonical Pathways (CP) and 7 Upstream Transcriptional Factors (UTFs) strongly associated with the infection process. NRF2 signatures were present in both CPs and UTFs pathways. Proteins involved in iron metabolism, such as heme oxigenase 1 (HO-1) and ferritin besides sequestosome (SQSMT1 or p62) were found in the NRF2 CPs and the NRF2 UTFs. Differences in the involvement of iron metabolism pathway in Leishmania infection was revealed by the presence of HO-1 and ferritin. Noteworty, HO-1 was strongly associated with L. amazonensis infection, while ferritin was regulated by both species. As expected, higher HO-1 and p62 expressions were validated in L. amazonensis-infected BMMØ, in addition to decreased expression of ferritin and nitric oxide production. Moreover, BMMØ incubated with L. amazonensis LPG also expressed higher levels of HO-1 in comparison to those stimulated with L. major LPG. In addition, L. amazonensis-induced uptake of holoTf was higher than that induced by L. major in BMMØ, and holoTf was also detected at higher levels in vacuoles induced by L. amazonensis. Taken together, these findings indicate that NRF2 pathway activation and increased HO-1 production, together with higher levels of holoTf uptake, may promote permissiveness to L. amazonensis infection. In this context, differences in protein signatures triggered in the host by L. amazonensis and L. major infection could drive the outcomes in distinct clinical forms of leishmaniasis.


Asunto(s)
Leishmaniasis/metabolismo , Macrófagos/parasitología , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Ferritinas/metabolismo , Hemo-Oxigenasa 1/metabolismo , Leishmania , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Óxido Nítrico/metabolismo , Proteómica , Proteínas de Unión al ARN/metabolismo , Transducción de Señal
4.
Mem. Inst. Oswaldo Cruz ; 116: e210270, 2021. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1360595

RESUMEN

Lipid droplets (LDs; lipid bodies) are intracellular sites of lipid storage and metabolism present in all cell types. Eukaryotic LDs are involved in eicosanoid production during several inflammatory conditions, including infection by protozoan parasites. In parasites, LDs play a role in the acquisition of cholesterol and other neutral lipids from the host. The number of LDs increases during parasite differentiation, and the biogenesis of these organelles use specific signaling pathways involving protein kinases. In addition, LDs are important in cellular protection against lipotoxicity. Recently, these organelles have been implicated in eicosanoid and specialised lipid metabolism. In this article, we revise the main functions of protozoan parasite LDs and discuss future directions in the comprehension of these organelles in the context of pathogen virulence.

5.
Mem. Inst. Oswaldo Cruz ; 113(4): e170345, 2018. graf
Artículo en Inglés | LILACS | ID: biblio-894915

RESUMEN

BACKGROUND Leishmaniasis, one of the most neglected diseases, is a serious public health problem in many countries, including Brazil. Currently available treatments require long-term use and have serious side effects, necessitating the development of new therapeutic interventions. Because translocator protein (TSPO) levels are reduced in Leishmania amazonensis-infected cells and because this protein participates in apoptosis and immunomodulation, TSPO represents a potential target for Leishmania chemotherapy. The present study evaluated PK11195, a ligand of this protein, as an anti-leishmanial agent. OBJECTIVE To evaluate the leishmanicidal activity of PK11195 against L. amazonensis in infected CBA mouse macrophages in vitro. METHODS The viability of axenic L. amazonensis, Leishmania major, and Leishmania braziliensis promastigotes was assessed after 48 h treatment with PK11195 (0.2-400 µM). Additionally, intracellular parasite viability was evaluated to determine IC50 values and the number of viable parasites in infected macrophages treated with PK11195 (50-100 µM). Infected macrophages were then treated with PK11195 (25-100 µM) to determine the percentage of L. amazonensis-infected cells and the number of parasites per infected cell. Electron microscopy was used to investigate morphological changes caused by PK11195. The production of free oxygen radicals, nitric oxide, and pro-inflammatory cytokines was also evaluated in infected macrophages treated with PK11195 and primed or not primed with IFN-γ. FINDINGS Median IC50 values for PK11195 were 14.2 µM for L. amazonensis, 8.2 µM for L. major, and 3.5 µM for L. braziliensis. The selective index value for L. amazonensis was 13.7, indicating the safety of PK11195 for future testing in mammals. Time- and dose-dependent reductions in the percentage of infected macrophages, the number of parasites per infected macrophage, and the number of viable intracellular parasites were observed. Electron microscopy revealed some morphological alterations suggestive of autophagy. Interestingly, MCP-1 and superoxide levels were reduced in L. amazonensis-infected macrophages treated with PK11195. MAIN CONCLUSIONS PK11195 causes the killing of amastigotes in vitro by mechanisms independent of inflammatory mediators and causes morphological alterations within Leishmania parasites, suggestive of autophagy, at doses that are non-toxic to macrophages. Thus, this molecule has demonstrated potential as an anti-leishmanial agent.


Asunto(s)
Humanos , Leishmania mexicana , Utilización de Medicamentos , Macrófagos
6.
J Leukoc Biol ; 90(3): 575-82, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21685247

RESUMEN

Neutrophils are considered the host's first line of defense against infections and have been implicated in the immunopathogenesis of Leishmaniasis. Leishmania parasites are inoculated alongside vectors' saliva, which is a rich source of pharmacologically active substances that interfere with host immune response. In the present study, we tested the hypothesis that salivary components from Lutzomyia longipalpis, an important vector of visceral Leishmaniasis, enhance neutrophil apoptosis. Murine inflammatory peritoneal neutrophils cultured in the presence of SGS presented increased surface expression of FasL and underwent caspase-dependent and FasL-mediated apoptosis. This proapoptosis effect of SGS on neutrophils was abrogated by pretreatment with protease as well as preincubation with antisaliva antibodies. Furthermore, in the presence of Leishmania chagasi, SGS also increased apoptosis on neutrophils and increased PGE(2) release and decreased ROS production by neutrophils, while enhancing parasite viability inside these cells. The increased parasite burden was abrogated by treatment with z-VAD, a pan caspase inhibitor, and NS-398, a COX-2 inhibitor. In the presence of SGS, Leishmania-infected neutrophils produced higher levels of MCP-1 and attracted a high number of macrophages by chemotaxis in vitro assays. Both of these events were abrogated by pretreatment of neutrophils with bindarit, an inhibitor of CCL2/MCP-1 expression. Taken together, our data support the hypothesis that vector salivary proteins trigger caspase-dependent and FasL-mediated apoptosis, thereby favoring Leishmania survival inside neutrophils, which may represent an important mechanism for the establishment of Leishmania infection.


Asunto(s)
Apoptosis , Leishmaniasis/inmunología , Neutrófilos/patología , Neutrófilos/parasitología , Psychodidae/inmunología , Saliva/inmunología , Animales , Caspasas/metabolismo , Quimiocina CCL2/metabolismo , Quimiotaxis , Proteína Ligando Fas/metabolismo , Femenino , Interacciones Huésped-Parásitos , Immunoblotting , Leishmania , Leishmaniasis/parasitología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Psychodidae/parasitología , Especies Reactivas de Oxígeno/metabolismo , Saliva/química , Saliva/parasitología , Glándulas Salivales/citología , Glándulas Salivales/inmunología , Glándulas Salivales/parasitología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda