Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biol Chem ; 298(2): 101526, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34958798

RESUMEN

Ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family members (ENPP1-7) have been implicated in key biological and pathophysiological processes, including nucleotide and phospholipid signaling, bone mineralization, fibrotic diseases, and tumor-associated immune cell infiltration. ENPPs are single-pass transmembrane ecto-enzymes, with notable exceptions of ENPP2 (Autotaxin) and ENNP6, which are secreted and glycosylphosphatidylinositol (GPI)-anchored, respectively. ENNP1 and ENNP2 are the best characterized and functionally the most interesting members. Here, we review the structural features of ENPP1-7 to understand how they evolved to accommodate specific substrates and mediate different biological activities. ENPPs are defined by a conserved phosphodiesterase (PDE) domain. In ENPP1-3, the PDE domain is flanked by two N-terminal somatomedin B-like domains and a C-terminal inactive nuclease domain that confers structural stability, whereas ENPP4-7 only possess the PDE domain. Structural differences in the substrate-binding site endow each protein with unique characteristics. Thus, ENPP1, ENPP3, ENPP4, and ENPP5 hydrolyze nucleotides, whereas ENPP2, ENPP6, and ENNP7 evolved as phospholipases through adaptions in the catalytic domain. These adaptations explain the different biological and pathophysiological functions of individual members. Understanding the ENPP members as a whole advances our insights into common mechanisms, highlights their functional diversity, and helps to explore new biological roles.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Dominio Catalítico , Nucleótidos/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Transducción de Señal , Relación Estructura-Actividad
2.
Proteomics ; 20(19-20): e2000062, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32864787

RESUMEN

Expression of the macrophage immunometabolism regulator gene (MACIR) is associated with severity of autoimmune disease pathology and with the regulation of macrophage biology through unknown mechanisms. The encoded 206 amino acid protein lacks homology to any characterized protein sequence and is a disordered protein according to structure prediction algorithms. To identify interactions of MACIR with proteins from all subcellular compartments, a membrane solubilization buffer is employed, that together with a high affinity EF hand based pull down method, increases the resolution of quantitative mass spectrometry analysis with significant enrichment of interactions from membrane bound nuclear and mitochondrial compartments compared to samples prepared with radioimmunoprecipitation assay buffer. A total of 63 significant interacting proteins are identified and interaction with the nuclear transport receptor TNPO1 and the trafficking proteins UNC119 homolog A and B are validated by immunoprecipitation. Mutational analysis in two candidate nuclear localization signal motifs in the MACIR amino acid sequence shows the interaction with TNPO1 is likely via a non-classical proline/tyrosine-nuclear localization signal motif (aa98-117). It is shown that employing a highly specific and high affinity pull down method that performs efficiently in this glycerol and detergent rich buffer is a powerful approach for the analysis of uncharacterized protein interactomes.


Asunto(s)
Macrófagos , Proteínas de la Membrana , Proteómica , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Humanos , Inmunoprecipitación , beta Carioferinas
3.
Cell Chem Biol ; 30(1): 69-84.e14, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36640760

RESUMEN

Autotaxin (ATX; ENPP2) produces the lipid mediator lysophosphatidic acid (LPA) that signals through disparate EDG (LPA1-3) and P2Y (LPA4-6) G protein-coupled receptors. ATX/LPA promotes several (patho)physiological processes, including in pulmonary fibrosis, thus serving as an attractive drug target. However, it remains unclear if clinical outcome depends on how different types of ATX inhibitors modulate the ATX/LPA signaling axis. Here, we show that the ATX "tunnel" is crucial for conferring key aspects of ATX/LPA signaling and dictates cellular responses independent of ATX catalytic activity, with a preference for activation of P2Y LPA receptors. The efficacy of the ATX/LPA signaling responses are abrogated more efficiently by tunnel-binding inhibitors, such as ziritaxestat (GLPG1690), compared with inhibitors that exclusively target the active site, as shown in primary lung fibroblasts and a murine model of radiation-induced pulmonary fibrosis. Our results uncover a receptor-selective signaling mechanism for ATX, implying clinical benefit for tunnel-targeting ATX inhibitors.


Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/tratamiento farmacológico , Receptores del Ácido Lisofosfatídico , Transducción de Señal , Lisofosfolípidos/química , Fibroblastos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda