RESUMEN
BACKGROUND: Mobile technology is increasingly important for delivering public health interventions to remote populations. This research study developed, piloted, and assessed a serious game for mobile devices that teaches geohazard, maternal, and neonatal health messages. This unique mHealth intervention aimed at low-literacy audiences in low resource settings is part of the Maternal and Neonatal Technologies in Rural Areas (MANTRA) project: Increasing maternal and child health resilience before, during, and after disasters using mobile technology in Nepal. METHODS: The serious game was developed through a co-creation process between London and Kathmandu based researchers by email and video-calling, and face-to-face with local stakeholders in Nepal. The process identified core needs, developed appropriate pictograms and mechanics, and tailored the pilot serious game to the local cultural context. Evaluations and feedback from end users took place in rural villages and suburban Kathmandu in Province Three. Field evaluation sessions used mixed methods. Researchers observed game play and held focus group discussions to elicit qualitative feedback and understand engagement, motivation, and usability, and conducted a paired pre- and post-game knowledge assessment. RESULTS: The MANTRA serious game is contextualized to rural Nepal. The game teaches 28 learning objectives in three modules: maternal health, neonatal health, and geohazards, through picture matching with immediate audio and visual feedback. User feedback from focus groups demonstrated high engagement, motivation, and usability of the game. CONCLUSIONS: This MANTRA study is a unique mHealth intervention of a serious game to teach core health and geohazards messages to low-literacy audiences in rural Nepal. Although the mobile game is tailored for this specific context, the developmental process and insights could be transferable to the development of other games-based interventions and contextualized for any part of the world. Successfully targeting this low-literacy and illiterate audience makes the MANTRA development process the first of its kind and a novel research endeavor with potential for widespread impact and adoption following further game development. TRIAL REGISTRATION: This project was approved by the University College London Ethics Committee in London, United Kingdom [10547/001], and the Nepal Health Research Council in Kathmandu, Nepal [Reg. No. 105/2017]. All participants provided informed written consent.
Asunto(s)
Educación en Salud/métodos , Aplicaciones Móviles/estadística & datos numéricos , Juego e Implementos de Juego , Servicios de Salud Rural/organización & administración , Países en Desarrollo , Femenino , Humanos , Alfabetización , Nepal , Población Rural/estadística & datos numéricos , Telemedicina/métodosRESUMEN
In Low and Middle Income Countries (LMIC), one of the causes of maternal and child mortality is a lack of medical knowledge and consequently the inability to seek timely healthcare. Mobile health (mHealth) technology is gradually becoming a universal intervention platform across the globe due to ubiquity of mobile phones and network coverage. MANTRA is a novel mHealth intervention developed to tackle maternal and child health issues through a serious mobile game app in rural Nepal, which demonstrated a statistically significant knowledge improvement in rural women. This paper explores the perceptions and usability of the MANTRA app amongst rural women and Female Community Health Volunteers (FCHVs) in Nepal. Despite the challenges of a target user group with limited educational levels and low smartphone experience, all participants viewed the MANTRA app with approval and enthusiasm. They were willing to engage further with the mHealth intervention and to share their experience and knowledge with fellow community members. Participants also showed an increase in awareness of danger signs enabling them to make better informed health decisions in the future. FCHVs viewed the app as a validation tool providing and support for greater impact of their efforts in rural Nepal. Growing mobile ownership, network coverage and availability of smartphones along with acceptance of the prototype MANTRA app in rural communities suggest encouraging prospects for mHealth interventions to be incorporated in the national health infrastructure in Nepal and other LMICs.
Asunto(s)
Aplicaciones Móviles , Juegos de Video , Niño , Atención a la Salud , Femenino , Humanos , Nepal , Población RuralRESUMEN
Mosquito surveillance is a crucial process for understanding the population dynamics of mosquitoes, as well as implementing interventional programs for controlling and preventing the spread of mosquito-borne diseases. Environmental surveillance agents who performing routine entomological surveys at properties in areas where mosquito-borne diseases are endemic play a critical role in vector surveillance by searching and destroying mosquito hotspots as well as collate information on locations with increased infestation. Currently, the process of recording information on paper-based forms is time-consuming and painstaking due to manual effort. The introduction of mobile surveillance applications will therefore improve the process of data collection, timely reporting, and field worker performance. Digital-based surveillance is critical in reporting real-time data; indeed, the real-time capture of data with phones could be used for predictive analytical models to predict mosquito population dynamics, enabling early warning detection of hotspots and thus alerting fieldworker agents into immediate action. This paper describes the development of a cross-platform digital system for improving mosquito surveillance in Brazil. It comprises of two components: a dashboard for managers and a mobile application for health agents. The former enables managers to assign properties to health workers who then survey them for mosquitoes and to monitor the progress of inspection visits in real-time. The latter, which is primarily designed as a data collection tool, enables the environmental surveillance agents to act on their assigned tasks of recording the details of the properties at inspections by filling out digital forms built into the mobile application, as well as details relating to mosquito infestation. The system presented in this paper was co-developed with significant input with environmental agents in two Brazilian cities where it is currently being piloted.
Asunto(s)
Culicidae , Aplicaciones Móviles , Animales , Brasil , Entomología , Humanos , Mosquitos VectoresRESUMEN
Serious games, conveying educational knowledge rather than merely entertainment, are a rapidly expanding research domain for cutting-edge educational technology. Digital interventions like serious games are great opportunities to overcome challenges in low-and-middle-income countries that limit access to health information, such as social barriers like low-literacy and gender. MANTRA: Increasing maternal and child health resilience before, during and after disasters using mobile technology in Nepal takes on these challenges with a novel digital health intervention; a serious mobile game aimed at vulnerable low-literacy female audiences in rural Nepal. The serious game teaches 28 learning objectives of danger signs in geohazards, maternal, and neonatal health to improve knowledge and self-assessment of common conditions and risks to inform healthcare-seeking behavior. Evaluations consisted of recruiting 35 end users to participate in a pre-test assessment, playing the game, post-test assessment, and focus groups to elicit qualitative feedback. Assessments analyzed knowledge gain in two ways; by learning objective with McNemar tests for each learning objective, and by participant scores with paired t-tests of overall scores and by module. Results of assessments of knowledge gain by learning objective (McNemar tests) indicate participants had sufficient prior knowledge to correctly interpret and respond to 26% of pictograms (coded AA), which is a desirable result although without the possibility of improvement through the intervention. The geohazard module had greatest impact as 16% of responses showed knowledge gain (coded BA). The two most successful learning objectives showing statistically significant positive change were evidence of rockfalls and small cracks in the ground (p = < 0.05). Assessment of knowledge gain by participant scores (paired t-tests) showed the 35 participants averaged a 7.7 point improvement (p < 0.001) in the assessment (28 learning objectives). Average change in knowledge of subdivided module scores (each module normalized to 100 points for comparison) was greatest in the geohazard module (9.5 points, p < 0.001), then maternal health (7.4 points, p = 0.0067), and neonatal health (6.0 points, p = 0.013). This evaluation demonstrated that carefully designed digital health interventions with pictograms co-authored by experts and users can teach complex health and geohazard situations. Significant knowledge gain was demonstrated for several learning objectives while those with non-significant or negative change will be re-designed to effectively convey information.