Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Clin Orthop Relat Res ; 473(8): 2587-98, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25903941

RESUMEN

BACKGROUND: Osteogenesis imperfecta (OI) is a genetic disease characterized by skeletal fragility and deformity. There is extensive debate regarding treatment options in adults with OI. Antiresorptive treatment reduces the number of fractures in growing oim/oim mice, an animal model that reproducibly mimics the moderate-to-severe form of OI in humans. Effects of long-term treatments with antiresorptive agents, considered for treatment of older patients with OI with similar presentation (moderate-to-severe OI) are, to date, unknown. QUESTIONS/PURPOSES: Fourier transform infrared (FTIR) imaging, which produces a map of the spatial variation in chemical composition in thin sections of bone, was used to address the following questions: (1) do oim/oim mice show a sex dependence in compositional properties at 6.5 months of age; (2) is there a sex-dependent response to treatment with antiresorptive agents used in the treatment of OI in humans; and (3) are any compositional parameters in oim/oim mice corrected to wild-type (WT) values after treatment? METHODS: FTIR imaging data were collected from femurs from four to five mice per sex per genotype per treatment. Treatments were 24 weeks of saline, alendronate, or RANK-Fc; and 12 weeks of saline+12 weeks RANK-Fc and 12 weeks of alendronate+RANK-Fc. FTIR imaging compositional parameters measured in cortical and cancellous bones were mineral-to-matrix ratio, carbonate-to-mineral ratio, crystal size/perfection, acid phosphate substitution, collagen maturity, and their respective distributions (heterogeneities). Because of the small sample size, nonparametric statistics (Mann-Whitney U- and Kruskal-Wallis tests with Bonferroni correction) were used to compare saline-treated male and female mice of different genotypes and treatment effects by sex and genotype, respectively. Statistical significance was defined as p<0.05. RESULTS: At 6.5 months, saline-treated male cortical oim/oim bone had increased mineral-to-matrix ratio (p=0.016), increased acid phosphate substitution (p=0.032), and decreased carbonate-to-mineral ratio (p=0.016) relative to WT. Cancellous bone in male oim/oim also had increased mineral-to-matrix ratio (p=0.016) relative to male WT. Female oim/oim mouse bone composition for all cortical and cancellous bone parameters was comparable to WT (p>0.05). Only the female WT mice showed a response of mean compositional properties to treatment, increasing mineral-to-matrix after RANK-Fc treatment in cancellous bone (p=0.036) compared with saline-treated mice. Male oim/oim increased mineral-to-matrix cortical and cancellous bone heterogeneity in response to all long-term treatments except for saline+RANK-Fc (p<0.04); female oim/oim cortical mineral-to-matrix bone heterogeneity increased with ALN+RANK-Fc and all treatments increased cancellous female oim/oim bone acid phosphate substitution heterogeneity (p<0.04). CONCLUSIONS: Both oim/oim and WT mice, which demonstrate sex-dependent differences in composition with saline treatment, showed few responses to long-term treatment with antiresorptive agents. Female WT mice appeared to be more responsive; male oim/oim mice showed more changes in compositional heterogeneity. Changes in bone composition caused by these agents may contribute to improved bone quality in oim/oim mice, because the treatments are known to reduce fracture incidence. CLINICAL RELEVANCE: The optimal drug therapy for long-term treatment of patients with moderate-to-severe OI is unknown. Based on bone compositional changes in mice, antiresorptive treatments are useful for continued treatment in OI. There is a reported sexual dimorphism in fracture incidence in adults with OI, but to date, no one has reported differences in response to pharmaceutical intervention. This study suggests that such an investigation is warranted.


Asunto(s)
Alendronato/farmacología , Conservadores de la Densidad Ósea/farmacología , Resorción Ósea/tratamiento farmacológico , Fémur/efectos de los fármacos , Fracturas Óseas/prevención & control , Osteogénesis Imperfecta/tratamiento farmacológico , Proteínas Recombinantes de Fusión/farmacología , Animales , Densidad Ósea/efectos de los fármacos , Resorción Ósea/genética , Resorción Ósea/metabolismo , Colágeno/metabolismo , Modelos Animales de Enfermedad , Femenino , Fémur/metabolismo , Fracturas Óseas/genética , Fracturas Óseas/metabolismo , Masculino , Ratones , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo , Factores Sexuales , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo
2.
Proc Natl Acad Sci U S A ; 109(47): 19178-83, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23129653

RESUMEN

Toughening in hierarchically structured materials like bone arises from the arrangement of constituent material elements and their interactions. Unlike microcracking, which entails micrometer-level separation, there is no known evidence of fracture at the level of bone's nanostructure. Here, we show that the initiation of fracture occurs in bone at the nanometer scale by dilatational bands. Through fatigue and indentation tests and laser confocal, scanning electron, and atomic force microscopies on human and bovine bone specimens, we established that dilatational bands of the order of 100 nm form as ellipsoidal voids in between fused mineral aggregates and two adjacent proteins, osteocalcin (OC) and osteopontin (OPN). Laser microdissection and ELISA of bone microdamage support our claim that OC and OPN colocalize with dilatational bands. Fracture tests on bones from OC and/or OPN knockout mice (OC(-/-), OPN(-/-), OC-OPN(-/-;-/-)) confirm that these two proteins regulate dilatational band formation and bone matrix toughness. On the basis of these observations, we propose molecular deformation and fracture mechanics models, illustrating the role of OC and OPN in dilatational band formation, and predict that the nanometer scale of tissue organization, associated with dilatational bands, affects fracture at higher scales and determines fracture toughness of bone.


Asunto(s)
Huesos/patología , Fracturas Óseas/patología , Animales , Matriz Ósea/metabolismo , Matriz Ósea/patología , Matriz Ósea/ultraestructura , Huesos/ultraestructura , Bovinos , Ensayo de Inmunoadsorción Enzimática , Dureza , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Microscopía de Fuerza Atómica , Microscopía Confocal , Osteocalcina/metabolismo , Osteopontina/metabolismo
3.
Calcif Tissue Int ; 95(5): 413-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25155443

RESUMEN

Bone has a hierarchical structure extending from the micrometer to the nanometer scale. We report here the first analysis of non-human primate osteonal bone obtained using a spectrometer coupled to an AFM microscope (AFM-IR), with a resolution of 50-100 nm. Average spectra correspond to those observed with conventional FTIR spectroscopy. The following validated FTIR parameters were calculated based on intensities observed in scans covering ~60 µm from the osteon center: mineral content (1030/1660 cm(-1)), crystallinity (1030/1020 cm(-1)), collagen maturity (1660/1690 cm(-1)), and acid phosphate content (1128/1096 cm(-1)). A repeating pattern was found in most of these calculated IR parameters corresponding to the reported inter- and intra-lamellar spacing in human bone, indicating that AFM-IR measurements will be able to provide novel compositional information on the variation in bone at the nanometer level.


Asunto(s)
Huesos/química , Huesos/ultraestructura , Animales , Microscopía de Fuerza Atómica , Papio , Espectroscopía Infrarroja por Transformada de Fourier
4.
Calcif Tissue Int ; 95(2): 125-31, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24888692

RESUMEN

Osteoporosis alters bone mass and composition ultimately increasing the fragility of primarily cancellous skeletal sites; however, effects of osteoporosis on tissue-level mechanical properties of cancellous bone are unknown. Dual-energy X-ray absorptiometry (DXA) scans are the clinical standard for diagnosing osteoporosis though changes in cancellous bone mass and mineralization are difficult to separate using this method. The goal of this study was to investigate possible difference in tissue-level properties with osteoporosis as defined by donor T scores. Spine segments from Caucasian female cadavers (58-92 years) were used. A T score for each donor was calculated from DXA scans to determine osteoporotic status. Tissue-level composition and mechanical properties of vertebrae adjacent to the scan region were measured using nanoindentation and Raman spectroscopy. Based on T scores, six samples were in the Osteoporotic group (58-74 years) and four samples were in the Not Osteoporotic group (65-92 years). The indentation modulus and mineral to matrix ratio (mineral:matrix) were lower in the Osteoporotic group than the Not Osteoporotic group. Mineral:matrix ratio decreased with age (r (2) = 0.35, p = 0.05), and the indentation modulus increased with areal bone mineral density (r (2) = 0.41, p = 0.04). This study is the first to examine cancellous bone composition and mechanical properties from a fracture prone location with osteoporosis. We found differences in tissue composition and mechanical properties with osteoporosis that could contribute to increased fragility in addition to changes in trabecular architecture and bone volume.


Asunto(s)
Calcificación Fisiológica/fisiología , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/fisiopatología , Osteoporosis/diagnóstico por imagen , Osteoporosis/fisiopatología , Absorciometría de Fotón , Anciano , Anciano de 80 o más Años , Cadáver , Femenino , Humanos , Persona de Mediana Edad
5.
Connect Tissue Res ; 55 Suppl 1: 92-6, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25158189

RESUMEN

Dentin Sialophosphoprotein (DSPP) is the major non-collagenous protein of dentin and plays a significant role in dentin mineralization. Recently, animal models lacking DSPP have been developed and the DSPP KO phenotype has been characterized at the histological level. Little is known, however, about the DSPP KO dentin at nano- and meso-scale. Dentin is a hierarchical material spanning from nano- to macroscale, hence information on the effects of DSPP deficiency at the submicron scale is essential for understanding of its role in dentin biomineralization. To bridge this gap, we have conducted ultrastructural studies of dentin from DSPP KO animals. Transmission electron microscopy (TEM) studies of DSPP KO dentin revealed that although the overall ultrastructural organization was similar to the WT, the mineral particles were less organized. Scanning electron microscopy in the back-scattered mode (BS-SEM) of the DSPP KO dentin revealed that circumpulpal dentin comprises large areas of non-mineralized matrix, with numerous spherulitic mineralized inclusions, while the mantle dentin appeared largely unaffected. Analysis of the mineral distribution in the circumpulpal dentin of the DSPP KO mice suggests a reduction in the number of mineral nucleation sites and an increase in the nucleation barrier in DSPP KO dentin. These preliminary results indicate that in addition to the reduction of mineralized and total dentin volume in DSPP KO animals significant changes in the ultrastructural organization exist. These changes are likely related to the role of DSPP in the regulation of mineral formation and organization in dentin.


Asunto(s)
Dentina/ultraestructura , Dentinogénesis/fisiología , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/ultraestructura , Fosfoproteínas/deficiencia , Fosfoproteínas/ultraestructura , Sialoglicoproteínas/deficiencia , Sialoglicoproteínas/ultraestructura , Calcificación de Dientes/fisiología , Animales , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Fenotipo
6.
J Cell Physiol ; 228(7): 1594-600, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23359245

RESUMEN

Mice deficient in GATA-1 or NF-E2, transcription factors required for normal megakaryocyte (MK) development, have increased numbers of MKs, reduced numbers of platelets, and a striking high bone mass phenotype. Here, we show the bone geometry, microarchitecture, biomechanical, biochemical, and mineral properties from these mutant mice. We found that the outer geometry of the mutant bones was similar to controls, but that both mutants had a striking increase in total bone area (up to a 35% increase) and trabecular bone area (up to a 19% increase). Interestingly, only the NF-E2 deficient mice had a significant increase in cortical bone area (21%) and cortical thickness (27%), which is consistent with the increase in bone mineral density (BMD) seen only in the NF-E2 deficient femurs. Both mutant femurs exhibited significant increases in several biomechanical properties including peak load (up to a 32% increase) and stiffness (up to a 13% increase). Importantly, the data also demonstrate differences between the two mutant mice. GATA-1 deficient femurs break in a ductile manner, whereas NF-E2 deficient femurs are brittle in nature. To better understand these differences, we examined the mineral properties of these bones. Although none of the parameters measured were different between the NF-E2 deficient and control mice, an increase in calcium (21%) and an increase in the mineral/matrix ratio (32%) was observed in GATA-1 deficient mice. These findings appear to contradict biomechanical findings, suggesting the need for further research into the mechanisms by which GATA-1 and NF-E2 deficiency alter the material properties of bone.


Asunto(s)
Densidad Ósea/fisiología , Huesos/fisiología , Factor de Transcripción GATA1/deficiencia , Subunidad p45 del Factor de Transcripción NF-E2/deficiencia , Animales , Fenómenos Biomecánicos , Huesos/anatomía & histología , Calcio/metabolismo , Femenino , Fémur/anatomía & histología , Fémur/fisiología , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Megacariocitos/citología , Megacariocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Subunidad p45 del Factor de Transcripción NF-E2/genética , Subunidad p45 del Factor de Transcripción NF-E2/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo
7.
J Cell Biochem ; 114(8): 1917-27, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23494951

RESUMEN

It is believed that orthopedic and implant longevity can be improved by optimizing fixation, or direct bone-implant contact, through the stimulation of new bone formation around the implant. The purpose of this study was to determine whether heat (600°C) or radiofrequency plasma glow discharge (RFGD) pretreatment of Ti6Al4V stimulated calcium-phosphate mineral formation in cultures of attached MC3T3 osteoprogenitor cells with or without a fibronectin coating. Calcium-phosphate mineral was analyzed by flame atomic absorption spectrophotometry, scanning electron microscopy (SEM)/electron dispersive X-ray microanalysis (EDAX) and Fourier transformed infrared spectroscopy (FTIR). RFGD and heat pretreatments produced a general pattern of increased total soluble calcium levels, although the effect of heat pretreatment was greater than that of RFGD. SEM/EDAX showed the presence of calcium-and phosphorus-containing particles on untreated and treated disks that were more numerous on fibronectin-coated disks. These particles were observed earliest (1 week) on RFGD-pretreated surfaces. FTIR analyses showed that the heat pretreatment produced a general pattern of increased levels of apatite mineral at 2-4 weeks; a greater effect was observed for fibronectin-coated disks compared to uncoated disks. The observed findings suggest that heat pretreatment of Ti6Al4V increased the total mass of the mineral formed in MC3T3 osteoprogenitor cell cultures more than RFGD while the latter pretreatment hastened the early deposition of mineral. These findings help to support the hypothesis that the pretreatments enhance the osteoinductive properties of the alloy.


Asunto(s)
Fosfatos de Calcio/metabolismo , Calor , Ensayo de Materiales , Titanio/química , Aleaciones , Animales , Línea Celular , Fibronectinas/química , Ratones
8.
J Biol Chem ; 286(30): 26794-805, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21636574

RESUMEN

Cysteine (C)-X-C motif chemokine receptor 4 (CXCR4), the primary receptor for stromal cell-derived factor-1 (SDF-1), is involved in bone morphogenic protein 2 (BMP2)-induced osteogenic differentiation of mesenchymal progenitors. To target the in vivo function of CXCR4 in bone and explore the underlying mechanisms, we conditionally inactivated CXCR4 in osteoprecursors by crossing osterix (Osx)-Cre mice with floxed CXCR4 (CXCR4(fl/fl)) mice to generate knock-outs with CXCR4 deletion driven by the Osx promoter (Osx::CXCR4(fl/fl)). The Cre-mediated excision of CXCR4 occurred exclusively in bone of Osx::CXCR4(fl/fl) mice. When compared with littermate controls, Osx::CXCR4(fl/fl) mice developed smaller osteopenic skeletons as evidenced by reduced trabecular and cortical bone mass, lower bone mineral density, and a slower mineral apposition rate. In addition, Osx::CXCR4(fl/fl) mice displayed chondrocyte disorganization in the epiphyseal growth plate associated with decreased proliferation and collagen matrix syntheses. Moreover, mature osteoblast-related expression of type I collagen α1 and osteocalcin was reduced in bone of Osx::CXCR4(fl/fl) mice versus controls, suggesting that CXCR4 deficiency results in arrested osteoblast progression. Primary cultures for osteoblastic cells derived from Osx::CXCR4(fl/fl) mice also showed decreased proliferation and impaired osteoblast differentiation in response to BMP2 or BMP6 stimulation, and suppressed activation of intracellular BMP receptor-regulated Smads (R-Smads) and Erk1/2 was identified in CXCR4-deficient cells and bone tissues. These findings provide the first in vivo evidence that CXCR4 functions in postnatal bone development by regulating osteoblast development in cooperation with BMP signaling. Thus, CXCR4 acts as an endogenous signaling component necessary for bone formation.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular , Osteoblastos/metabolismo , Osteogénesis/fisiología , Receptores CXCR4/metabolismo , Animales , Densidad Ósea/fisiología , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/metabolismo , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 6/genética , Proteína Morfogenética Ósea 6/metabolismo , Condrocitos/metabolismo , Colágeno Tipo I/biosíntesis , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Ratones , Ratones Noqueados , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Receptores CXCR4/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo
9.
J Biol Chem ; 286(23): 20228-38, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21343307

RESUMEN

Mineralized tissues such as dentin and bone assemble extracellular matrices uniquely rich in a variety of acidic phosphoproteins. Although these proteins are presumed to play a role in the process of biomineralization, key questions regarding the nature of their contributions remain unanswered. First, it is not known whether highly phosphorylated proteins alone can induce matrix mineralization, or whether this activity requires the involvement of other bone/dentin non-collagenous proteins. Second, it remains to be established whether the protein kinases that phosphorylate these acidic proteins are unique to cells responsible for producing mineralized tissues. To begin to address these questions, we consider the case of phosphophoryn (PP), due to its high content of phosphate, high affinity for Ca(2+), and its potential role in hydroxyapatite nucleation. We have created a model system of biomineralization in a cellular environment by expressing PP in NIH3T3 fibroblasts (which do not produce a mineralized matrix); as a positive control, PP was expressed in MC3T3-E1 osteoblastic cells, which normally mineralize their matrices. We show that expression of PP in NIH3T3 cells is sufficient for the induction of matrix mineralization. In addition, assessment of the phosphorylation status of PP in these cells reveals that the transfected NIH3T3 cells are able to phosphorylate PP. We suggest that the phosphorylation of PP is essential for mineral formation. The principle goal of this study is to enrich the current knowledge of mineralized tissue phosphorylation events by analyzing them in the context of a complete cellular environment.


Asunto(s)
Calcificación Fisiológica/fisiología , Calcio/metabolismo , Durapatita/metabolismo , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/fisiología , Fosfoproteínas/biosíntesis , Animales , Matriz Extracelular/genética , Ratones , Células 3T3 NIH , Fosfoproteínas/genética
10.
Biochem Biophys Res Commun ; 419(2): 333-8, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22342723

RESUMEN

The manuscript tests the hypothesis that posttranslational modification of the SIBLING family of proteins in general and osteopontin in particular modify the abilities of these proteins to regulate in vitro hydroxyapatite (HA) formation. Osteopontin has diverse effects on hydroxyapatite (HA) mineral crystallite formation and growth depending on the extent of phosphorylation. We hypothesized that different regions of full-length OPN would also have distinct effects on the mineralization process. Thrombin fragmentation of milk OPN (mOPN) was used to test this hypothesis. Three fragments were tested in a de novo HA formation assay; an N-terminal fragment (aa 1-147), a central fragment (aa 148-204) denoted SKK-fragment and a C-terminal fragment (aa 205-262). Compared to intact mOPN the C- and N-terminal fragments behaved comparably, promoting HA formation and growth, but the central SKK-fragment acted as a mineralization inhibitor. In a seeded growth experiment all fragments inhibited mineral proliferation, but the SKK-fragment was the most effective inhibitor. These effects, seen in HA-formation and seeded growth assays in a gelatin gel system and in a pH-stat experiment were lost when the protein or fragments were dephosphorylated. Effects of the fully phosphorylated protein and fragments were also altered in the presence of fibrillar collagen. The diverse effects can be explained in terms of the intrinsically disordered nature of OPN and its fragments which enable them to interact with their multiple partners.


Asunto(s)
Durapatita/síntesis química , Proteínas de la Leche/química , Osteopontina/química , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Bovinos , Colágeno/química , Datos de Secuencia Molecular , Trombina/química
11.
Blood ; 116(14): 2582-9, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20554970

RESUMEN

Osteoporosis is a frequent problem in disorders characterized by iron overload, such as the thalassemias and hereditary hemochromatosis. The exact role of iron in the development of osteoporosis in these disorders is not established. To define the effect of iron excess in bone, we generated an iron-overloaded mouse by injecting iron dextran at 2 doses into C57/BL6 mice for 2 months. Compared with the placebo group, iron-overloaded mice exhibited dose-dependent increased tissue iron content, changes in bone composition, and trabecular and cortical thinning of bone accompanied by increased bone resorption. Iron-overloaded mice had increased reactive oxygen species and elevated serum tumor necrosis factor-α and interleukin-6 concentrations that correlated with severity of iron overload. Treatment of iron-overloaded mice with the antioxidant N-acetyl-L-cysteine prevented the development of trabecular but not cortical bone abnormalities. This is the first study to demonstrate that iron overload in mice results in increased bone resorption and oxidative stress, leading to changes in bone microarchitecture and material properties and thus bone loss.


Asunto(s)
Sobrecarga de Hierro/complicaciones , Osteoporosis/etiología , Estrés Oxidativo , Acetilcisteína/uso terapéutico , Animales , Antioxidantes/uso terapéutico , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Sobrecarga de Hierro/inducido químicamente , Sobrecarga de Hierro/metabolismo , Complejo Hierro-Dextran , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteoporosis/patología
12.
CrystEngComm ; 14(18): 5681-5700, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22962542

RESUMEN

For those seeking to model biomineralization in vitro, hydrogels can serve as excellent models of the extracellular matrix (ECM) microenvironment. A major challenge posed in implementing such systems is the logistics involved, from fundamental engineering to experimental design. For the study of calcium phosphate (e.g., hydroxyapatite) formation, many researchers use hydrogel-based double-diffusion systems (DDSs). The various designs of these DDSs are seemingly as unique as their applications. In this Highlight, we present a survey of four distinct types of double-diffusion systems and evaluate them in the context of fundamental diffusion theory. Based upon this analysis, we present the design and evaluation of an optimized system. The techniques and framework for the evaluation and construction of a DDS presented here can be applied to any DDS that a researcher may want to implement for their particular studies of biomineralization.

13.
Hum Mutat ; 32(6): 598-609, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21344539

RESUMEN

Osteogenesis imperfecta (OI) is most often caused by mutations in the type I procollagen genes (COL1A1/COL1A2). We identified two children with substitutions in the type I procollagen C-propeptide cleavage site, which disrupt a unique processing step in collagen maturation and define a novel phenotype within OI. The patients have mild OI caused by mutations in COL1A1 (Patient 1: p.Asp1219Asn) or COL1A2 (Patient 2: p.Ala1119Thr), respectively. Patient 1 L1-L4 DXA Z-score was +3.9 and pQCT vBMD was+3.1; Patient 2 had L1-L4 DXA Z-score of 0.0 and pQCT vBMD of -1.8. Patient BMD contrasts with radiographic osteopenia and histomorphometry without osteosclerosis. Mutant procollagen processing is impaired in pericellular and in vitro assays. Patient dermal collagen fibrils have irregular borders. Incorporation of pC-collagen into matrix leads to increased bone mineralization. FTIR imaging confirms elevated mineral/matrix ratios in both patients, along with increased collagen maturation in trabecular bone, compared to normal or OI controls. Bone mineralization density distribution revealed a marked shift toward increased mineralization density for both patients. Patient 1 has areas of higher and lower bone mineralization than controls; Patient 2's bone matrix has a mineral content exceeding even classical OI bone. These patients define a new phenotype of high BMD OI and demonstrate that procollagen C-propeptide cleavage is crucial to normal bone mineralization.


Asunto(s)
Huesos/anomalías , Huesos/patología , Colágeno Tipo I/genética , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/patología , Fragmentos de Péptidos/genética , Procolágeno/genética , Adolescente , Secuencia de Aminoácidos , Animales , Densidad Ósea/genética , Matriz Ósea , Calcificación Fisiológica/genética , Niño , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Femenino , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Mutación , Fragmentos de Péptidos/metabolismo , Fenotipo , Procolágeno/metabolismo
14.
J Cell Biochem ; 112(2): 607-13, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21268082

RESUMEN

Chick limb-bud mesenchymal stem cells plated in high density culture in the presence of 4 mM inorganic phosphate and vitamin C differentiate and form a mineralizable matrix, resembling that of the chick growth plate. To further elucidate the mechanism that allows these cultures to form physiologic hydroxyapatite deposits, and how the process can be manipulated to gain insight into mineralization mechanisms, we compared gene expression in mineralizing (with 4 mM inorganic phosphate) and non-mineralizing cultures (containing only 1 mM inorganic phosphate) at the start of mineralization (day 11) and after mineralization reached a plateau (day 17) using a chick specific microarray. Based on replicate microarray experiments and K-cluster analysis, several genes associated with the mineralization process were identified, and their expression patterns confirmed throughout the culture period by quantitative RT-PCR. The functions of bone morphogenetic protein 1, BMP1, dentin matrix protein 1, DMP1, the sodium phosphate co-transporter, NaPi IIb, matrix metalloprotease 13. MMP-13, and alkaline phosphatase, along with matrix protein genes (type X collagen, bone sialoprotein, and osteopontin) usually associated with initiation of mineralization are discussed.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de la Matriz Extracelular/genética , Esbozos de los Miembros/citología , Esbozos de los Miembros/metabolismo , Animales , Diferenciación Celular/genética , Embrión de Pollo , Pollos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Calcif Tissue Int ; 89(1): 1-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21533960

RESUMEN

Transcriptional regulation of the postnatal skeleton is incompletely understood. Here, we determined the consequence of loss of early growth response gene 1 (EGR-1) on bone properties. Analyses were performed on both the microscopic and molecular levels utilizing micro-computed tomography (micro-CT) and Fourier transform infrared imaging (FTIRI), respectively. Mice deficient in EGR-1 (Egr-1 (-/-)) were studied and compared to sex- and age-matched wild-type (wt) control animals. Femoral trabecular bone in male Egr-1 (-/-) mice demonstrated osteopenic characteristics marked by reductions in both bone volume fraction (BV/TV) and bone mineral density (BMD). Morphological analysis revealed fewer trabeculae in these animals. In contrast, female Egr-1 (-/-) animals had thinner trabeculae, but BV/TV and BMD were not significantly reduced. Analysis of femoral cortical bone at the mid-diaphysis did not show significant osteopenic characteristics but detected changes in cross-sectional geometry in both male and female Egr-1 (-/-) animals. Functionally, this resulted in decreased resistance to three-point bending as indicated by a reduction in maximum load, failure load, and stiffness. Assessment of compositional bone properties, including mineral-to-matrix ratio, carbonate-to-phosphate ratio, crystallinity, and cross-linking, in femurs by FTIRI did not show any significant differences or an appreciable trend between Egr-1 (-/-) and wt mice of either sex. Unexpectedly, rib bone from Egr-1 (-/-) animals displayed distinct osteopenic traits that were particularly pronounced in female mice. This study provides genetic evidence that both sex and skeletal site are critical determinants of EGR-1 activity in vivo and that its site-specific action may contribute to the mechanical properties of bone.


Asunto(s)
Huesos/diagnóstico por imagen , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Animales , Densidad Ósea/genética , Densidad Ósea/fisiología , Huesos/química , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Tomografía Computarizada por Rayos X
16.
Cells Tissues Organs ; 194(2-4): 302-6, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21597262

RESUMEN

Fourier transform infrared imaging spectroscopy (FTIRI)-assessed bone composition parameters (mineral content, collagen maturity, crystal size and perfection, and carbonate content) describe bone quality and correlate to bone fracture risk. The challenge with studying bone quality in patients treated with antiresorptive drugs such as bisphosphonates (e.g., alendronate) and selective estrogen receptor modulators (SERMs) (e.g. raloxifene) is being able to test bone mechanical performance and material properties pre- and posttreatment. The purpose of this study was to evaluate the FTIRI changes in a large animal model of osteoporosis (female sheep with dietary induced metabolic acidosis; MA). Previous studies have investigated the relationship between bone material properties and bone strength in humans and smaller animals and have shown that changes in compositional properties influence fracture risk. Here we characterize the MA model at 6 and 12 months, demonstrate the loss of bone and changes in compositional properties, and show that 6 months of treatment with both antiresorptives ameliorate the bone loss as assessed by bone mineral density and FTIRI. This preliminary data suggest that the MA sheep model allows investigation of whether drug treatments preserve bone properties that exist at the time of treatment or if they induce further beneficial changes.


Asunto(s)
Alendronato/uso terapéutico , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Enfermedades Óseas Metabólicas/patología , Huesos/patología , Clorhidrato de Raloxifeno/uso terapéutico , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Alendronato/farmacología , Animales , Huesos/efectos de los fármacos , Clorhidrato de Raloxifeno/farmacología , Ovinos
17.
Clin Orthop Relat Res ; 469(8): 2170-8, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21210314

RESUMEN

BACKGROUND: Bone strength depends on both bone quantity and quality. The former is routinely estimated in clinical settings through bone mineral density measurements but not the latter. Bone quality encompasses the structural and material properties of bone. Although its importance is appreciated, its contribution in determining bone strength has been difficult to precisely quantify partly because it is multifactorial and requires investigation of all bone hierarchical levels. Fourier transform infrared spectroscopy provides one way to explore these levels. QUESTIONS/PURPOSES: The purposes of our review were to (1) provide a brief overview of Fourier transform infrared spectroscopy as a way to establish bone quality, (2) review the major bone material parameters determined from Fourier transform infrared spectroscopy, and (3) review the role of Fourier transform infrared microspectroscopic analysis in establishing bone quality. METHODS: We used the ISI Web of Knowledge database initially to identify articles containing the Boolean term "infrared" AND "bone." We then focused on articles on infrared spectroscopy in bone-related journals. RESULTS: Infrared spectroscopy provides information on bone material properties. Their microspectroscopic versions allow one to establish these properties as a function of anatomic location, mineralization extent, and bone metabolic activity. It provides answers pertaining to the contribution of mineral to matrix ratio, mineral maturity, mineral carbonate substitution, and collagen crosslinks to bone strength. Alterations of bone material properties have been identified in disease (especially osteoporosis) not attainable by other techniques. CONCLUSIONS: Infrared spectroscopic analysis is a powerful tool for establishing the important material properties contributing to bone strength and thus has helped better understand changes in fragile bone.


Asunto(s)
Huesos/fisiología , Espectroscopía Infrarroja por Transformada de Fourier , Densidad Ósea/fisiología , Huesos/química , Colágeno , Humanos
18.
Differentiation ; 79(4-5): 211-7, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20356667

RESUMEN

The murine mesenchymal cell line, C3H10T1/2 in micromass culture undergoes chondrogenic differentiation with the addition of BMP-2. This study compares the use of BMP-2 vs. insulin, transferrin, and sodium selenite (ITS) to create a chondrogenic micromass cell culture system that models cartilage calcification in the presence of 4mM inorganic phosphate. BMP-2 treated cultures showed more intense alcian blue staining for proteoglycans than ITS treated cultures at early time points. Both ITS and BMP-2 treated cultures showed similar mineral deposition in cultures treated with 4mM phosphate via von Kossa staining, however FTIR spectroscopy of cultures showed different matrix properties. ITS treated cultures produced matrix that more closely resembled mouse calcified cartilage by FTIR analysis. (45)Ca uptake curves showed delayed onset of mineralization in cultures treated with BMP-2, however they had an increased rate of mineralization (initial slope of (45)Ca uptake curve) when compared to the cultures treated with ITS. Immunohistochemistry showed the presence of both collagens type I and type II in BMP-2 and ITS treated control (1mM inorganic phosphate) and mineralizing cultures. BMP-2 treated mineralizing cultures displayed more intense staining for collagen type II than all other cultures. Collagen type X staining was detected at Day 9 only in mineralizing cultures treated with ITS. Western blotting of Day 9 cultures confirmed the presence of collagen type X in the mineralizing ITS cultures, and also showed very small amounts of collagen type X in BMP-2 treated cultures and control ITS cultures. By Day 16 all cultures stained positive for collagen type X. These data suggest that BMP-2 induces a more chondrogenic phenotype, while ITS treatment favors maturation and hypertrophy of the chondrocytes in the murine micromass cultures.


Asunto(s)
Calcificación Fisiológica/fisiología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Condrogénesis/fisiología , Animales , Proteína Morfogenética Ósea 2/metabolismo , Calcio/metabolismo , Línea Celular , Medios de Cultivo/química , Insulina/metabolismo , Ratones , Ratones Endogámicos C3H , Selenito de Sodio/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Transferrina/metabolismo
19.
J Cell Biochem ; 111(3): 653-8, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20589756

RESUMEN

Chondrocyte apoptosis is thought to be an important step in the calcification of cartilage in vivo; however, there are conflicting reports as to whether or not this apoptosis is a necessary precursor to mineralization. The goal of this study was to determine whether or not apoptosis is necessary for mineralization in an in vitro murine micromass model of endochondral ossification. C3H10T1/2 murine mesenchymal stem cells were plated in micromass culture in the presence of 4 mM inorganic phosphate with the addition of the apoptogens, camptothecin, or staurosporine, to induce apoptosis. The rate and total accumulation of mineralization was measured with (45)Ca uptake. In these studies, both apoptogens increased the rate of mineralization, with staurosporine increasing (45)Ca accumulation by about 2.5 times that of controls and camptothecin increasing total amounts of mineralization about 1.5 times that of controls. Inhibiting cell apoptosis with the caspase inhibitor, ZVAD-fmk, to prevent apoptosis, caused slower rates of (45)Ca uptake; however, total amounts of (45)Ca accumulation reached the same values by day 30 of culture. FTIR data showed mineralization in all samples treated with 4 mM inorganic phosphate, with the highest mineral to matrix ratios in the camptothecin treated samples.


Asunto(s)
Apoptosis/fisiología , Calcificación Fisiológica , Condrocitos/citología , Animales , Aves , Calcio/farmacocinética , Técnicas de Cultivo de Célula , Cinética , Células Madre Mesenquimatosas/citología , Ratones
20.
Calcif Tissue Int ; 86(1): 42-6, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19998030

RESUMEN

Matrix extracellular phosphoglycoprotein (MEPE) is an inhibitor of mineralization in situ and in cell cultures where altered expression is associated with oncogenic osteomalacia and hypophosphatemic rickets. The purpose of this study was to determine whether the intact protein or the peptide(s) originating from this protein was responsible for the inhibition. The ability of the intact protein and the acidic, serine- and aspartate-rich MEPE-associated motif (ASARM) peptide to promote or inhibit de novo hydroxyapatite formation and growth of hydroxyapatite seed crystals, in both phosphorylated and dephosphorylated forms, was assessed at room temperature in a dynamic gel diffusion system at 3.5 and 5 days. The most effective nucleator concentration was also examined when associated with fibrillar type I collagen. The phosphorylated intact protein was an effective promoter of mineralization in the gelatin gel diffusion system, while the ASARM peptide was an effective inhibitor. When dephosphorylated both the intact protein and the ASARM peptide had no effect on mineralization. Associated with collagen fibrils, some of the effect of the intact protein was lost. This study demonstrates the importance of posttranslational modification for the site-specific activity of MEPE and its ASARM peptide.


Asunto(s)
Huesos/metabolismo , Calcificación Fisiológica/fisiología , Durapatita/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Fragmentos de Péptidos/metabolismo , Fosfoproteínas/metabolismo , Huesos/efectos de los fármacos , Huesos/fisiopatología , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Cristalización , Proteínas de la Matriz Extracelular/farmacología , Geles/química , Glicoproteínas/farmacología , Humanos , Osteomalacia/genética , Osteomalacia/metabolismo , Osteomalacia/fisiopatología , Fragmentos de Péptidos/farmacología , Fosfoproteínas/farmacología , Fosforilación/efectos de los fármacos , Modificación Traduccional de las Proteínas/efectos de los fármacos , Modificación Traduccional de las Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda