Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Small ; 20(8): e2306656, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37817351

RESUMEN

Herein, carbon dot (CD)-supported Fe single-atom nanozymes with high content of pyrrolic N and ultrasmall size (ph-CDs-Fe SAzyme) are fabricated by a phenanthroline-mediated ligand-assisted strategy. Compared with phenanthroline-free nanozymes (CDs-Fe SAzyme), ph-CDs-Fe SAzyme exhibit higher peroxidase (POD)-like activity due to their structure similar to that of ferriporphyrin in natural POD. Aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure spectroscopy (XAFS) analyses show that metal Fe is dispersed in ph-CDs-Fe SAzyme as single atoms. Steady-state kinetic studies show that the maximum velocity (Vmax ) and turnover number (kcat ) of H2 O2  homolytic cleavage catalyzed by ph-CDs-Fe SAzyme are 3.0 and 6.2 more than those of the reaction catalyzed by CDs-Fe SAzyme. Density functional theory (DFT) calculations show that the energy barrier of the reaction catalyzed by ph-CDs-Fe SAzyme is lower than that catalyzed by CDs-Fe SAzyme. Antitumor efficacy experiments show that ph-CDs-Fe SAzyme can efficiently inhibit the growth of tumor cells both in vitro and in vivo by synergistic chemodynamic and photothermal effects. Here a new paradigm is provided for the development of efficient antitumor therapeutic approaches based on SAzyme with POD-like activity.


Asunto(s)
Carbono , Hemina , Cinética , Pirroles , Espectroscopía de Absorción de Rayos X
2.
Biomacromolecules ; 24(3): 1258-1266, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36788678

RESUMEN

Tissue engineering offers attractive strategies to develop three-dimensional scaffolds mimicking the complex hierarchical structure of the native bone. The bone is formed by cells incorporated in a molecularly organized extracellular matrix made of an inorganic phase, called biological apatite, and an organic phase mainly made of collagen and noncollagenous macromolecules. Although many strategies have been developed to replicate the complexity of bone at the nanoscale in vitro, a critical challenge has been to control the orchestrated process of mineralization promoted by bone cells in vivo and replicate the anatomical and biological properties of native bone. In this study, we used type I collagen to fabricate mineralized scaffolds mimicking the microenvironment of the native bone. The sulfated polysaccharide κ-carrageenan was added to the scaffolds to fulfill the role of noncollagenous macromolecules in the organization and mineralization of the bone matrix and cell adhesion. Scanning electron microscopy images of the surface of the collagen/κ-carrageenan scaffolds showed the presence of a dense and uniform network of intertwined fibrils, while images of the scaffolds' lateral sides showed the presence of collagen fibrils with a parallel alignment, which is characteristic of dense connective tissues. MC3T3-E1 osteoblasts were cultured in the collagen scaffolds and were viable after up to 7 days of culture, both in the absence and in the presence of κ-carrageenan. The presence of κ-carrageenan in the collagen scaffolds stimulated the maturation of the cells to a mineralizing phenotype, as suggested by the increased expression of key genes related to bone mineralization, including alkaline phosphatase (Alp), bone sialoprotein (Bsp), osteocalcin (Oc), and osteopontin (Opn), as well as the ability to mineralize the extracellular matrix after 14 and 21 days of culture. Taken together, the results described in this study shed light on the potential use of collagen/κ-carrageenan scaffolds to study the role of the structural organization of bone-mimetic synthetic matrices in cell function.


Asunto(s)
Biomimética , Calcificación Fisiológica , Carragenina , Colágeno/química , Ingeniería de Tejidos/métodos , Osteoblastos , Andamios del Tejido/química
3.
Eur Biophys J ; 52(8): 721-733, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938350

RESUMEN

Matrix vesicles are a special class of extracellular vesicles thought to actively contribute to both physiologic and pathologic mineralization. Proteomic studies have shown that matrix vesicles possess high amounts of annexin A5, suggesting that the protein might have multiple roles at the sites of calcification. Currently, Annexin A5 is thought to promote the nucleation of apatitic minerals close to the inner leaflet of the matrix vesicles' membrane enriched in phosphatidylserine and Ca2+. Herein, we aimed at unravelling a possible additional role of annexin A5 by investigating the ability of annexin A5 to adsorb on matrix-vesicle biomimetic liposomes and Langmuir monolayers made of dipalmitoylphosphatidylserine (DPPS) and dipalmitoylphosphatidylcholine (DPPC) in the absence and in the presence of Ca2+. Differential scanning calorimetry and dynamic light scattering measurements showed that Ca2+ at concentrations in the 0.5-2.0 mM range induced the aggregation of liposomes probably due to the formation of DPPS-enriched domains. However, annexin A5 avoided the aggregation of liposomes at Ca2+ concentrations lower than 1.0 mM. Surface pressure versus surface area isotherms showed that the adsorption of annexin A5 on the monolayers made of a mixture of DPPC and DPPS led to a reduction in the area of excess compared to the theoretical values, which confirmed that the protein favored attractive interactions among the membrane lipids. The stabilization of the lipid membranes by annexin A5 was also validated by recording the changes with time of the surface pressure. Finally, fluorescence microscopy images of lipid monolayers revealed the formation of spherical lipid-condensed domains that became unshaped and larger in the presence of annexin A5. Our data support the model that annexin A5 in matrix vesicles is recruited at the membrane sites enriched in phosphatidylserine and Ca2+ not only to contribute to the intraluminal mineral formation but also to stabilize the vesicles' membrane and prevent its premature rupture.


Asunto(s)
Anexinas , Liposomas , Anexina A5/química , Anexina A5/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Biomimética , Proteómica , Calcio/metabolismo
4.
Purinergic Signal ; 19(2): 353-366, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35870033

RESUMEN

Matrix vesicles (MVs) are a special class of extracellular vesicles released by mineralizing cells during bone and tooth mineralization that initiate the precipitation of apatitic minerals by regulating the extracellular ratio between inorganic phosphate (Pi), a calcification promoter, and pyrophosphate (PPi), a calcification inhibitor. The Pi/PPi ratio is thought to be controlled by two ecto-phosphatases present on the outer leaflet of the MVs' membrane: ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) that produces PPi as well as Pi from ATP and tissue-nonspecific alkaline phosphatase (TNAP) that hydrolyzes both ATP and PPi to generate Pi. However, if and how these enzymes act in concert in MVs are still unclear. Herein, we investigated the role of NPP1 and TNAP in ATP hydrolysis during MV-mediated biomineralization using proteoliposomes as a biomimetic model for MVs. Proteoliposomes composed by 1,2-dipalmitoylphosphatidylcholine (DPPC) and harboring NPP1 alone, TNAP alone, or both together at different molar ratios (1:1, 10:1, and 1:10) were fabricated. After 48 h of incubation with ATP, TNAP-containing proteoliposomes consumed more ATP than NPP1-containing vesicles (270 and 210 nmol, respectively). Both types of vesicles comparatively formed ADP (205 and 201 nmol, respectively), while NPP1-containing vesicles hydrolyzed AMP less efficiently than TNAP-containing proteoliposomes (10 and 25 nmol, respectively). In vitro mineralization assays showed that in the presence of ATP, TNAP-harboring proteoliposomes mineralized through a sigmoidal single-step process, while NPP1-harboring vesicles displayed a two-step mineralization process. ATR-FTIR analyses showed that the minerals produced by TNAP-harboring proteoliposomes were structurally more similar to hydroxyapatite than those produced by NPP1-harboring vesicles. Our results with proteoliposomes indicate that the pyrophosphohydrolase function of NPP1 and the phosphohydrolase activity of TNAP act synergistically to produce a Pi/PPi ratio conducive to mineralization and the synergism is maximal when the two enzymes are present at equimolar concentrations. The significance of these findings for hypophosphatasia is discussed.


Asunto(s)
Fosfatasa Alcalina , Calcinosis , Humanos , Fosfatasa Alcalina/metabolismo , Biomineralización , Huesos/metabolismo , Minerales , Adenosina Trifosfato
5.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806282

RESUMEN

Inspired by the composition and confined environment provided by collagen fibrils during bone formation, this study aimed to compare two different strategies to synthesize bioactive hybrid membranes and to assess the role the organic matrix plays as physical confinement during mineral phase deposition. The hybrid membranes were prepared by (1) incorporating calcium phosphate in a biopolymeric membrane for in situ hydroxyapatite (HAp) precipitation in the interstices of the biopolymeric membrane as a confined environment (Methodology 1) or (2) adding synthetic HAp nanoparticles (SHAp) to the freshly prepared biopolymeric membrane (Methodology 2). The biopolymeric membranes were based on hydrolyzed collagen (HC) and chitosan (Cht) or κ-carrageenan (κ-carr). The hybrid membranes presented homogeneous and continuous dispersion of the mineral particles embedded in the biopolymeric membrane interstices and enhanced mechanical properties. The importance of the confined spaces in biomineralization was confirmed by controlled biomimetic HAp precipitation via Methodology 1. HAp precipitation after immersion in simulated body fluid attested that the hybrid membranes were bioactive. Hybrid membranes containing Cht were not toxic to the osteoblasts. Hybrid membranes added with silver nanoparticles (AgNPs) displayed antibacterial action against different clinically important pathogenic microorganisms. Overall, these results open simple and promising pathways to develop a new generation of bioactive hybrid membranes with controllable degradation rates and antimicrobial properties.


Asunto(s)
Quitosano , Nanopartículas del Metal , Antibacterianos/metabolismo , Antibacterianos/farmacología , Quitosano/metabolismo , Quitosano/farmacología , Colágeno/metabolismo , Durapatita/metabolismo , Osteoblastos/metabolismo , Plata/metabolismo , Plata/farmacología
6.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499456

RESUMEN

Matrix vesicles (MVs) contain the whole machinery necessary to initiate apatite formation in their lumen. We suspected that, in addition to tissue-nonspecific alkaline phosphatase (TNAP), Na,K,-ATPase (NKA) could be involved in supplying phopshate (Pi) in the early stages of MV-mediated mineralization. MVs were extracted from the growth plate cartilage of chicken embryos. Their average mean diameters were determined by Dynamic Light Scattering (DLS) (212 ± 19 nm) and by Atomic Force Microcopy (AFM) (180 ± 85 nm). The MVs had a specific activity for TNAP of 9.2 ± 4.6 U·mg-1 confirming that the MVs were mineralization competent. The ability to hydrolyze ATP was assayed by a colorimetric method and by 31P NMR with and without Levamisole and SBI-425 (two TNAP inhibitors), ouabain (an NKA inhibitor), and ARL-67156 (an NTPDase1, NTPDase3 and Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) competitive inhibitor). The mineralization profile served to monitor the formation of precipitated calcium phosphate complexes, while IR spectroscopy allowed the identification of apatite. Proteoliposomes containing NKA with either dipalmitoylphosphatidylcholine (DPPC) or a mixture of 1:1 of DPPC and dipalmitoylphosphatidylethanolamine (DPPE) served to verify if the proteoliposomes were able to initiate mineral formation. Around 69-72% of the total ATP hydrolysis by MVs was inhibited by 5 mM Levamisole, which indicated that TNAP was the main enzyme hydrolyzing ATP. The addition of 0.1 mM of ARL-67156 inhibited 8-13.7% of the total ATP hydrolysis in MVs, suggesting that NTPDase1, NTPDase3, and/or NPP1 could also participate in ATP hydrolysis. Ouabain (3 mM) inhibited 3-8% of the total ATP hydrolysis by MVs, suggesting that NKA contributed only a small percentage of the total ATP hydrolysis. MVs induced mineralization via ATP hydrolysis that was significantly inhibited by Levamisole and also by cleaving TNAP from MVs, confirming that TNAP is the main enzyme hydrolyzing this substrate, while the addition of either ARL-6715 or ouabain had a lesser effect on mineralization. DPPC:DPPE (1:1)-NKA liposome in the presence of a nucleator (PS-CPLX) was more efficient in mineralizing compared with a DPPC-NKA liposome due to a better orientation of the NKA active site. Both types of proteoliposomes were able to induce apatite formation, as evidenced by the presence of the 1040 cm-1 band. Taken together, the findings indicated that the hydrolysis of ATP was dominated by TNAP and other phosphatases present in MVs, while only 3-8% of the total hydrolysis of ATP could be attributed to NKA. It was hypothesized that the loss of Na/K asymmetry in MVs could be caused by a complete depletion of ATP inside MVs, impairing the maintenance of symmetry by NKA. Our study carried out on NKA-liposomes confirmed that NKA could contribute to mineral formation inside MVs, which might complement the known action of PHOSPHO1 in the MV lumen.


Asunto(s)
Calcinosis , Monoéster Fosfórico Hidrolasas , Animales , Embrión de Pollo , Monoéster Fosfórico Hidrolasas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio , Calcificación Fisiológica , Fosfatasa Alcalina/metabolismo , Hidrólisis , Adenosina Trifosfato , Liposomas/química , Minerales/metabolismo
7.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012211

RESUMEN

The biochemical machinery involved in matrix vesicles-mediated bone mineralization involves a specific set of lipids, enzymes, and proteins. Annexins, among their many functions, have been described as responsible for the formation and stabilization of the matrix vesicles' nucleational core. However, the specific role of each member of the annexin family, especially in the presence of type-I collagen, remains to be clarified. To address this issue, in vitro mineralization was carried out using AnxA6 (in solution or associated to the proteoliposomes) in the presence or in the absence of type-I collagen, incubated with either amorphous calcium phosphate (ACP) or a phosphatidylserine-calcium phosphate complex (PS-CPLX) as nucleators. Proteoliposomes were composed of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylcholine: 1,2-dipalmitoylphosphatidylserine (DPPC:DPPS), and DPPC:Cholesterol:DPPS to mimic the outer and the inner leaflet of the matrix vesicles membrane as well as to investigate the effect of the membrane fluidity. Kinetic parameters of mineralization were calculated from time-dependent turbidity curves of free Annexin A6 (AnxA6) and AnxA6-containing proteoliposomes dispersed in synthetic cartilage lymph. The chemical composition of the minerals formed was investigated by Fourier transform infrared spectroscopy (FTIR). Free AnxA6 and AnxA6-proteoliposomes in the presence of ACP were not able to propagate mineralization; however, poorly crystalline calcium phosphates were formed in the presence of PS-CPLX, supporting the role of annexin-calcium-phosphatidylserine complex in the formation and stabilization of the matrix vesicles' nucleational core. We found that AnxA6 lacks nucleation propagation capacity when incorporated into liposomes in the presence of PS-CPLX and type-I collagen. This suggests that AnxA6 may interact either with phospholipids, forming a nucleational core, or with type-I collagen, albeit less efficiently, to induce the nucleation process.


Asunto(s)
Anexina A6 , Calcinosis , 1,2-Dipalmitoilfosfatidilcolina/química , Anexina A6/metabolismo , Colágeno/metabolismo , Humanos , Fosfatos/metabolismo , Fosfatidilserinas/química , Proteolípidos
8.
J Struct Biol ; 212(2): 107607, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32858148

RESUMEN

Bone biomineralization is an exquisite process by which a hierarchically organized mineral matrix is formed. Growing evidence has uncovered the involvement of one class of extracellular vesicles, named matrix vesicles (MVs), in the formation and delivery of the first mineral nuclei to direct collagen mineralization. MVs are released by mineralization-competent cells equipped with a specific biochemical machinery to initiate mineral formation. However, little is known about the mechanisms by which MVs can trigger this process. Here, we present a combination of in situ investigations and ex vivo analysis of MVs extracted from growing-femurs of chicken embryos to investigate the role played by phosphatidylserine (PS) in the formation of mineral nuclei. By using self-assembled Langmuir monolayers, we reconstructed the nucleation core - a PS-enriched motif thought to trigger mineral formation in the lumen of MVs. In situ infrared spectroscopy of Langmuir monolayers and ex situ analysis by transmission electron microscopy evidenced that mineralization was achieved in supersaturated solutions only when PS was present. PS nucleated amorphous calcium phosphate that converted into biomimetic apatite. By using monolayers containing lipids extracted from native MVs, mineral formation was also evidenced in a manner that resembles the artificial PS-enriched monolayers. PS-enrichment in lipid monolayers creates nanodomains for local increase of supersaturation, leading to the nucleation of ACP at the interface through a multistep process. We posited that PS-mediated nucleation could be a predominant mechanism to produce the very first mineral nuclei during MV-driven bone/cartilage biomineralization.


Asunto(s)
Biomineralización/fisiología , Fosfatos de Calcio/metabolismo , Lípidos/fisiología , Fosfatidilserinas/metabolismo , Animales , Apatitas/metabolismo , Biomimética/métodos , Calcificación Fisiológica/fisiología , Calcio/metabolismo , Cartílago/metabolismo , Pollos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Fémur/metabolismo , Microscopía Electrónica de Transmisión/métodos
9.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085611

RESUMEN

Annexin A6 (AnxA6) is the largest member of the annexin family of proteins present in matrix vesicles (MVs). MVs are a special class of extracellular vesicles that serve as a nucleation site during cartilage, bone, and mantle dentin mineralization. In this study, we assessed the localization of AnxA6 in the MV membrane bilayer using native MVs and MV biomimetics. Biochemical analyses revealed that AnxA6 in MVs can be divided into three distinct groups. The first group corresponds to Ca2+-bound AnxA6 interacting with the inner leaflet of the MV membrane. The second group corresponds to AnxA6 localized on the surface of the outer leaflet. The third group corresponds to AnxA6 inserted in the membrane's hydrophobic bilayer and co-localized with cholesterol (Chol). Using monolayers and proteoliposomes composed of either dipalmitoylphosphatidylcholine (DPPC) to mimic the outer leaflet of the MV membrane bilayer or a 9:1 DPPC:dipalmitoylphosphatidylserine (DPPS) mixture to mimic the inner leaflet, with and without Ca2+, we confirmed that, in agreement with the biochemical data, AnxA6 interacted differently with the MV membrane. Thermodynamic analyses based on the measurement of surface pressure exclusion (πexc), enthalpy (ΔH), and phase transition cooperativity (Δt1/2) showed that AnxA6 interacted with DPPC and 9:1 DPPC:DPPS systems and that this interaction increased in the presence of Chol. The selective recruitment of AnxA6 by Chol was observed in MVs as probed by the addition of methyl-ß-cyclodextrin (MßCD). AnxA6-lipid interaction was also Ca2+-dependent, as evidenced by the increase in πexc in negatively charged 9:1 DPPC:DPPS monolayers and the decrease in ΔH in 9:1 DPPC:DPPS proteoliposomes caused by the addition of AnxA6 in the presence of Ca2+ compared to DPPC zwitterionic bilayers. The interaction of AnxA6 with DPPC and 9:1 DPPC:DPPS systems was distinct even in the absence of Ca2+ as observed by the larger change in Δt1/2 in 9:1 DPPC:DPPS vesicles as compared to DPPC vesicles. Protrusions on the surface of DPPC proteoliposomes observed by atomic force microscopy suggested that oligomeric AnxA6 interacted with the vesicle membrane. Further work is needed to delineate possible functions of AnxA6 at its different localizations and ways of interaction with lipids.


Asunto(s)
Anexina A6/metabolismo , Calcificación Fisiológica , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Rastreo Diferencial de Calorimetría , Colesterol/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Microdominios de Membrana/metabolismo , Microscopía de Fuerza Atómica , Proteolípidos/metabolismo
10.
Arch Biochem Biophys ; 667: 14-21, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-30998909

RESUMEN

Matrix vesicles (MVs) are a class of extracellular vesicles that initiate mineralization in cartilage, bone, and other vertebrate tissues by accumulating calcium ions (Ca2+) and inorganic phosphate (Pi) within their lumen and forming a nucleation core (NC). After further sequestration of Ca2+ and Pi, the NC transforms into crystalline complexes. Direct evidence of the existence of the NC and its maturation have been provided solely by analyses of dried samples. We isolated MVs from chicken embryo cartilage and used atomic force microscopy peak force quantitative nanomechanical property mapping (AFM-PFQNM) to measure the nanomechanical and morphological properties of individual MVs under both mineralizing (+Ca2+) and non-mineralizing (-Ca2+) fluid conditions. The elastic modulus of MVs significantly increased by 4-fold after incubation in mineralization buffer. From AFM mapping data, we inferred the morphological changes of MVs as mineralization progresses: prior to mineralization, a punctate feature, the NC, is present within MVs and this feature grows and stiffens during mineralization until it occupies most of the MV lumen. Dynamic light scattering showed a significant increase in hydrodynamic diameter and no change in the zeta potential of hydrated MVs after incubation with Ca2+. This validates that crystalline complexes, which are strongly negative relative to MVs, were forming within the lumen of MVs. These data were substantiated by transmission electron microscopy energy dispersive X-ray and Fourier transform infrared spectroscopic analyses of dried MVs, which provide evidence that the complexes increased in size, crystallinity, and Ca/P ratio within MVs during the mineralization process.


Asunto(s)
Biomineralización/fisiología , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Microscopía de Fuerza Atómica/métodos , Animales , Fenómenos Biomecánicos , Cartílago/química , Cartílago/metabolismo , Cartílago/ultraestructura , Embrión de Pollo , Vesículas Extracelulares/ultraestructura , Microscopía Electrónica de Transmisión , Espectroscopía Infrarroja por Transformada de Fourier
11.
J Bone Miner Metab ; 37(4): 607-613, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30324534

RESUMEN

Tissue-nonspecific alkaline phosphatase (TNAP), a glycosylphosphatidylinositol-anchored ectoenzyme present on the membrane of matrix vesicles (MVs), hydrolyzes the mineralization inhibitor inorganic pyrophosphate as well as ATP to generate the inorganic phosphate needed for apatite formation. Herein, we used proteoliposomes harboring TNAP as MV biomimetics with or without nucleators of mineral formation (amorphous calcium phosphate and complexes with phosphatidylserine) to assess the role of the MVs' membrane lipid composition on TNAP activity by means of turbidity assay and FTIR analysis. We found that TNAP-proteoliposomes have the ability to induce mineralization even in the absence of mineral nucleators. We also found that the addition of cholesterol or sphingomyelin to TNAP-proteoliposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine reduced the ability of TNAP to induce biomineralization. Our results suggest that the lipid microenvironment is essential for the induction and propagation of minerals mediated by TNAP.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Calcificación Fisiológica , Microambiente Celular , Lípidos/química , Proteolípidos/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Dispersión Dinámica de Luz , Humanos , Hidrólisis , Cinética , Espectroscopía Infrarroja por Transformada de Fourier
12.
Nano Lett ; 18(10): 6301-6311, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30240228

RESUMEN

Efficient small interfering RNA (siRNA) delivery in the presence of serum is of crucial importance for effective gene therapy. Fluorinated vectors are considered to be attractive candidates for siRNA-mediated gene therapy because of their delivery efficacy in serum-containing media. However, the mechanisms driving the superior gene transfection behavior of fluorinated vectors are still not well-understood, and comprehensive investigations are warranted. Herein, we fabricated a library of perfluorooctanoyl fluoride-fluorinated (PFF-fluorinated) oligoethylenimines (f xOEIs, x is the PFF:OEI feeding ratio), which can readily form nanoassemblies (f xOEI NAs) capable of efficient siRNA delivery in cells cultured in medium both devoid of and supplemented with fetal bovine serum (FBS). The gene silencing test in serum-containing medium revealed that the f0.7OEI/siRNA NAs achieved a luciferase silencing of ∼88.4% in Luc-HeLa cells cultured in FBS-containing medium, which was almost 2-fold greater than the silencing efficacy of siRNA delivered by the commercially available vector Lipo 2000 (∼48.8%). High levels of apolipoprotein B silencing were also achieved by f0.7OEI/siRNA NAs in vivo. For an assessment of the underlying mechanisms of the efficacy of gene silencing of fluorinated vectors, two alkylated OEIs, aOEI-C8 and aOEI-C12, were fabricated as controls with similar molecular structure and hydrophobicity to that of f0.7OEI, respectively. In vitro investigations showed that the superior gene delivery exhibited by f0.7OEI NAs derived from the potent endosomal disruption capability of fluorinated vectors in the presence of serum, which was essentially attributed to the serum protein adsorption resistance of the f0.7OEI NAs. Therefore, this work provides an innovative approach to siRNA delivery as well as insights into fluorine-associated serum resistance.

13.
Biochim Biophys Acta Gen Subj ; 1862(3): 532-546, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29108957

RESUMEN

BACKGROUND: Matrix vesicles (MVs) are released from hypertrophic chondrocytes and from mature osteoblasts, the cells responsible for endochondral and membranous ossification. Under pathological conditions, they can also be released from cells of non-skeletal tissues such as vascular smooth muscle cells. MVs are extracellular vesicles of approximately 100-300nm diameter harboring the biochemical machinery needed to induce mineralization. SCOPE OF THE REVIEW: The review comprehensively delineates our current knowledge of MV biology and highlights open questions aiming to stimulate further research. The review is constructed as a series of questions addressing issues of MVs ranging from their biogenesis and functions, to biomimetic models. It critically evaluates experimental data including their isolation and characterization methods, like lipidomics, proteomics, transmission electron microscopy, atomic force microscopy and proteoliposome models mimicking MVs. MAJOR CONCLUSIONS: MVs have a relatively well-defined function as initiators of mineralization. They bind to collagen and their composition reflects the composition of lipid rafts. We call attention to the as yet unclear mechanisms leading to the biogenesis of MVs, and how minerals form and when they are formed. We discuss the prospects of employing upcoming experimental models to deepen our understanding of MV-mediated mineralization and mineralization disorders such as the use of reconstituted lipid vesicles, proteoliposomes and, native sample preparations and high-resolution technologies. GENERAL SIGNIFICANCE: MVs have been extensively investigated owing to their roles in skeletal and ectopic mineralization. MVs serve as a model system for lipid raft structures, and for the mechanisms of genesis and release of extracellular vesicles.


Asunto(s)
Condrocitos/ultraestructura , Matriz Extracelular/metabolismo , Vesículas Extracelulares , Osteoblastos/ultraestructura , Animales , Apatitas/metabolismo , Materiales Biomiméticos , Calcificación Fisiológica/fisiología , Calcinosis/fisiopatología , Condrocitos/patología , Colágeno/metabolismo , Vesículas Extracelulares/fisiología , Humanos , Hipertrofia , Microdominios de Membrana/fisiología , Minerales/metabolismo , Modelos Biológicos , Biogénesis de Organelos , Proteolípidos , Manejo de Especímenes , Calcificación Vascular/fisiopatología
14.
Biochim Biophys Acta Biomembr ; 1859(10): 1911-1920, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28549727

RESUMEN

Atomic force microscopy (AFM) is one of the most commonly used scanning probe microscopy techniques for nanoscale imaging and characterization of lipid-based particles. However, obtaining images of such particles using AFM is still a challenge. The present study extends the capabilities of AFM to the characterization of proteoliposomes, a special class of liposomes composed of lipids and proteins, mimicking matrix vesicles (MVs) involved in the biomineralization process. To this end, proteoliposomes were synthesized, composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS), with inserted tissue-nonspecific alkaline phosphatase (TNAP) and/or annexin V (AnxA5), both characteristic proteins of osteoblast-derived MVs. We then aimed to study how TNAP and AnxA5 insertion affects the proteoliposomes' membrane properties and, in turn, interactions with type II collagen, thus mimicking early MV activity during biomineralization. AFM images of these proteoliposomes, acquired in dynamic mode, revealed the presence of surface protrusions with distinct viscoelasticity, thus suggesting that the presence of the proteins induced local changes in membrane fluidity. Surface protrusions were measurable in TNAP-proteoliposomes but barely detectable in AnxA5-proteoliposomes. More complex surface structures were observed for proteoliposomes harboring both TNAP and AnxA5 concomitantly, resulting in a lower affinity for type II collagen fibers compared to proteoliposomes harboring AnxA5 alone. The present study achieved the topographic analysis of lipid vesicles by direct visualization of structural changes, resulting from protein incorporation, without the need for fluorescent probes.


Asunto(s)
Fosfatasa Alcalina/química , Fosfatasa Alcalina/metabolismo , Anexina A5/química , Anexina A5/metabolismo , Proteolípidos/química , Proteolípidos/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Animales , Biomimética/métodos , Calcificación Fisiológica/fisiología , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Colágeno Tipo II/química , Colágeno Tipo II/metabolismo , Liposomas/química , Liposomas/metabolismo , Fluidez de la Membrana/fisiología , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Microscopía de Fuerza Atómica/métodos , Ratas , Serina/química , Serina/metabolismo
15.
Ann Rheum Dis ; 75(1): 295-302, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378349

RESUMEN

OBJECTIVE: In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) that line joint synovial membranes aggressively invade the extracellular matrix, destroying cartilage and bone. As signal transduction in FLS is mediated through multiple pathways involving protein tyrosine phosphorylation, we sought to identify protein tyrosine phosphatases (PTPs) regulating the invasiveness of RA FLS. We describe that the transmembrane receptor PTPκ (RPTPκ), encoded by the transforming growth factor (TGF) ß-target gene, PTPRK, promotes RA FLS invasiveness. METHODS: Gene expression was quantified by quantitative PCR. PTP knockdown was achieved using antisense oligonucleotides. FLS invasion and migration were assessed in transwell or spot assays. FLS spreading was assessed by immunofluorescence microscopy. Activation of signalling pathways was analysed by Western blotting of FLS lysates using phosphospecific antibodies. In vivo FLS invasiveness was assessed by intradermal implantation of FLS into nude mice. The RPTPκ substrate was identified by pull-down assays. RESULTS: PTPRK expression was higher in FLS from patients with RA versus patients with osteoarthritis, resulting from increased TGFB1 expression in RA FLS. RPTPκ knockdown impaired RA FLS spreading, migration, invasiveness and responsiveness to platelet-derived growth factor, tumour necrosis factor and interleukin 1 stimulation. Furthermore, RPTPκ deficiency impaired the in vivo invasiveness of RA FLS. Molecular analysis revealed that RPTPκ promoted RA FLS migration by dephosphorylation of the inhibitory residue Y527 of SRC. CONCLUSIONS: By regulating phosphorylation of SRC, RPTPκ promotes the pathogenic action of RA FLS, mediating cross-activation of growth factor and inflammatory cytokine signalling by TGFß in RA FLS.


Asunto(s)
Artritis Reumatoide/patología , Fibroblastos/patología , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/fisiología , Membrana Sinovial/patología , Factor de Crecimiento Transformador beta1/fisiología , Animales , Artritis Reumatoide/metabolismo , Movimiento Celular/genética , Movimiento Celular/fisiología , Fibroblastos/metabolismo , Fibroblastos/fisiología , Fibroblastos/trasplante , Regulación Enzimológica de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Ratones Desnudos , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/fisiología , ARN Mensajero/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/trasplante , Regulación hacia Arriba
16.
Nanomedicine ; 12(2): 255-68, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26707894

RESUMEN

Cartilage undergoes drastic structural changes during the development of osteoarthritis and cannot heal itself due to a defective chondrocyte response. Thus, much effort has been invested in the development of disease modifying drugs able to block key mediators within the cartilage matrix and biochemical pathways inside chondrocytes. However, the delivery of therapeutic agents into cartilage is ineffective. This has led to the use of cartilage-targeted nanodrugs to accumulate therapeutic agents into specific cartilage sub-compartments. This review will describe the nanodrugs targeted to specific components of cartilage matrix to generate drug reservoirs within the cartilage. The nanodrugs used as chondrocyte-specific gene delivery systems are also described. Although the use of cartilage-targeted nanodrugs in osteoarthritis is still in its infancy, these studies lay the foundation for the development of novel approaches for preventing the progression of cartilage breakdown and improving the quality of life of patients with osteoarthritis. FROM THE CLINICAL EDITOR: Osteoarthritis is a degeneration of joint cartilage, which affects a large number of aging people. Current therapy for disease modification is often suboptimal. Recent research in nanomedicine has led to the design and use of nanodrugs with the aim to help reverse the disease process. In this comprehensive review, the authors described and discussed various nanodrugs in the hope that newer drugs could be discovered in the future.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Osteoartritis/tratamiento farmacológico , Preparaciones Farmacéuticas/administración & dosificación , Animales , Cartílago Articular/metabolismo , Cartílago Articular/patología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/patología , Humanos , Nanomedicina/métodos , Osteoartritis/metabolismo , Osteoartritis/patología
17.
Nanomedicine ; 12(2): 333-51, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26707820

RESUMEN

Carbon-based nanomaterials including carbon nanotubes, graphene oxide, fullerenes and nanodiamonds are potential candidates for various applications in medicine such as drug delivery and imaging. However, the successful translation of nanomaterials for biomedical applications is predicated on a detailed understanding of the biological interactions of these materials. Indeed, the potential impact of the so-called bio-corona of proteins, lipids, and other biomolecules on the fate of nanomaterials in the body should not be ignored. Enzymatic degradation of carbon-based nanomaterials by immune-competent cells serves as a special case of bio-corona interactions with important implications for the medical use of such nanomaterials. In the present review, we highlight emerging biomedical applications of carbon-based nanomaterials. We also discuss recent studies on nanomaterial 'coronation' and how this impacts on biodistribution and targeting along with studies on the enzymatic degradation of carbon-based nanomaterials, and the role of surface modification of nanomaterials for these biological interactions. FROM THE CLINICAL EDITOR: Advances in technology have produced many carbon-based nanomaterials. These are increasingly being investigated for the use in diagnostics and therapeutics. Nonetheless, there remains a knowledge gap in terms of the understanding of the biological interactions of these materials. In this paper, the authors provided a comprehensive review on the recent biomedical applications and the interactions of various carbon-based nanomaterials.


Asunto(s)
Materiales Biocompatibles/metabolismo , Carbono/metabolismo , Nanoestructuras , Animales , Biocatálisis , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacocinética , Materiales Biocompatibles/toxicidad , Carbono/química , Carbono/farmacocinética , Carbono/toxicidad , Fulerenos/química , Fulerenos/metabolismo , Fulerenos/farmacocinética , Fulerenos/toxicidad , Grafito/química , Grafito/metabolismo , Grafito/farmacocinética , Grafito/toxicidad , Humanos , Metabolismo de los Lípidos , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/toxicidad , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidad , Óxidos/química , Óxidos/metabolismo , Óxidos/farmacocinética , Óxidos/toxicidad , Corona de Proteínas/metabolismo
18.
J Biol Chem ; 289(40): 27481-93, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25128529

RESUMEN

TRPS1 (tricho-rhino-phalangeal syndrome) is a unique GATA-type transcription factor that acts as a transcriptional repressor. TRPS1 deficiency and dysregulated TRPS1 expression result in skeletal and dental abnormalities implicating TRPS1 in endochondral bone formation and tooth development. Moreover, patients with tricho-rhino-phalangeal syndrome frequently present with low bone mass indicating TRPS1 involvement in bone homeostasis. In addition, our previous data demonstrated accelerated mineralization of the perichondrium in Trps1 mutant mice and impaired dentin mineralization in Col1a1-Trps1 transgenic mice, implicating Trps1 in the mineralization process. To understand the role of Trps1 in the differentiation and function of cells producing mineralized matrix, we used a preodontoblastic cell line as a model of dentin mineralization. We generated both Trps1-deficient and Trps1-overexpressing stable cell lines and analyzed the progression of mineralization by alkaline phosphatase and alizarin red staining. As predicted, based on our previous in vivo data, delayed and decreased mineralization of Trps1-overexpressing odontoblastic cells was observed when compared with control cells. This was associated with down-regulation of genes regulating phosphate homeostasis. Interestingly, Trps1-deficient cells lost the ability to mineralize and demonstrated decreased expression of several genes critical for initiating the mineralization process, including Alpl and Phospho1. Based on these data, we have concluded that Trps1 serves two critical and context-dependent functions in odontoblast-regulated mineralization as follows: 1) Trps1 is required for odontoblast maturation by supporting expression of genes crucial for initiating the mineralization process, and 2) Trps1 represses the function of mature cells and, consequently, restricts the extent of extracellular matrix mineralization.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Dentina/crecimiento & desarrollo , Dentina/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular , Proteínas de Unión al ADN/genética , Dentinogénesis , Humanos , Odontoblastos/citología , Odontoblastos/metabolismo , Proteínas Represoras , Factores de Transcripción/genética
19.
J Nanosci Nanotechnol ; 14(1): 98-114, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24730253

RESUMEN

The recent advent of nanomedicine holds potential to revolutionize cancer therapy. This innovative discipline has paved the way for the emergence of a new class of drugs based on nanoengineered particles. These "nanodrugs" are designed to greatly enhance drug therapeutic indices. First-generation nanodrugs consisted of conventional anti-cancer drugs loaded into/onto nanoengineered particles (nanocarriers) devoid of targeting features (non-targeted nanodrugs). Non-targeted nanodrugs have provided the opportunity to carry large amounts of drugs, including poorly water-soluble and/or permeable drugs, to several types of tumors, improving the therapeutic index with respect to comparable free drugs. Although effective, the primary delivery mechanism of non-targeted nanodrugs was through passive tissue accumulation, due to pathophysiological differences between tumor-associated and healthy vessels, and through non-specific targeting of cell subsets, posing the danger of off-target binding and effects. Recently, the therapeutic indices of certain anti-cancer drugs were further improved by attaching targeting ligands to nanodrugs (targeted-nanodrugs). Targeted-nanodrugs selectively bind to cognate receptors expressed on target cells and enter cells more efficiently than non-targeted formulations. Although these advancements have been sufficiently beneficial to place targeted-nanodrugs into clinical development for use in cancer therapy, they also come at a price. The addition of ligands to drug-loaded nanocarriers often leads to additional synthesis steps and costs, and more complex biological performance relative to ligand-devoid nanodrugs. Here, we will discuss the benefits and challenges facing the addition of targeting features to nanodrugs for cancer therapy.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Terapia Molecular Dirigida/métodos , Nanocápsulas/administración & dosificación , Nanocápsulas/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Antineoplásicos/química , Diseño de Fármacos , Humanos
20.
ACS Nano ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937261

RESUMEN

Tumor metastasis remains a major challenge in cancer management. Among various treatment strategies, immune cell-based cancer therapy holds a great potential for inhibiting metastasis. However, its wide application in cancer therapy is restricted by complex preparations, as well as inadequate homing and controllability. Herein, we present a groundbreaking approach for bioorthogonally manipulating tumor-NK (natural killer) cell assembly to inhibit tumor metastasis. Multiple dibenzocyclootyne (DBCO) groups decorated long single-stranded DNA were tail-modified on core-shell upconversion nanoparticles (CSUCNPs) and condensed by photosensitive chemical linker (PC-Linker) DNA to shield most of the DBCO groups. On the one hand, the light-triggered DNA scaffolds formed a cross-linked network by click chemistry, effectively impeding tumor cell migration. On the other hand, the efficient cellular assembly facilitated the effective communication between tumor cells and NK-92 cells, leading to enhanced immune response against tumors and further suppression of tumor metastasis. These features make our strategy highly applicable to a wide range of metastatic cancers.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda