Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biol Chem ; 290(9): 5592-605, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25561726

RESUMEN

Glycogen synthase kinase-3 (GSK3) are ubiquitously expressed serine-threonine kinases involved in a plethora of functions ranging from the control of glycogen metabolism to transcriptional regulation. We recently demonstrated that GSK3 inhibition triggers JNK-cJUN-dependent apoptosis in human pancreatic cancer cells. However, the comprehensive picture of downstream GSK3-regulated pathways/functions remains elusive. Herein, counterbalancing the death signals, we show that GSK3 inhibition induces prosurvival signals through increased activity of the autophagy/lysosomal network. Our data also reveal a contribution of GSK3 in the regulation of the master transcriptional regulator of autophagy and lysosomal biogenesis, transcription factor EB (TFEB) in pancreatic cancer cells. Similarly to mammalian target of rapamycin (mTOR) inhibition, GSK3 inhibitors promote TFEB nuclear localization and leads to TFEB dephosphorylation through endogenous serine/threonine phosphatase action. However, GSK3 and mTOR inhibition impinge differently and independently on TFEB phosphorylation suggesting that TFEB is regulated by a panel of kinases and/or phosphatases. Despite their differential impact on TFEB phosphorylation, both GSK3 and mTOR inhibitors promote 14-3-3 dissociation and TFEB nuclear localization. Quantitative mass spectrometry analyses further reveal an increased association of TFEB with nuclear proteins upon GSK3 and mTOR inhibition suggesting a positive impact on TFEB transcriptional function. Finally, a predominant nuclear localization of TFEB is unveiled in fully fed pancreatic cancer cells, whereas a reduction in TFEB expression significantly impairs their capacity for growth in an anchorage-independent manner. In addition, TFEB-restricted cells are more sensitive to apoptosis upon GSK3 inhibition. Altogether, our data uncover new functions under the control of GSK3 in pancreatic cancer cells in addition to providing key insight into TFEB regulation.


Asunto(s)
Autofagia/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Piridinas/farmacología , Pirimidinas/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Immunoblotting , Espectrometría de Masas , Ratones Noqueados , Microscopía Confocal , Naftiridinas/farmacología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Interferencia de ARN , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
2.
Cell Death Discov ; 9(1): 45, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746928

RESUMEN

Gemcitabine is a first-line treatment agent for pancreatic ductal adenocarcinoma (PDAC). Contributing to its cytotoxicity, this chemotherapeutic agent is primarily a DNA replication inhibitor that also induces DNA damage. However, its therapeutic effects are limited owing to chemoresistance. Evidence in the literature points to a role for autophagy in restricting the efficacy of gemcitabine. Autophagy is a catabolic process in which intracellular components are delivered to degradative organelles lysosomes. Interfering with this process sensitizes PDAC cells to gemcitabine. It is consequently inferred that autophagy and lysosomal function need to be tightly regulated to maintain homeostasis and provide resistance to environmental stress, such as those imposed by chemotherapeutic drugs. However, the mechanism(s) through which gemcitabine promotes autophagy remains elusive, and the impact of gemcitabine on lysosomal function remains largely unexplored. Therefore, we applied complementary approaches to define the mechanisms triggered by gemcitabine that support autophagy and lysosome function. We found that gemcitabine elicited ERK-dependent autophagy in PDAC cells, but did not stimulate ERK activity or autophagy in non-tumoral human pancreatic epithelial cells. Gemcitabine also promoted transcription factor EB (TFEB)-dependent lysosomal function in PDAC cells. Indeed, treating PDAC cells with gemcitabine caused expansion of the lysosomal network, as revealed by Lysosome associated membrane protein-1 (LAMP1) and LysoTracker staining. More specific approaches have shown that gemcitabine promotes the activity of cathepsin B (CTSB), a cysteine protease playing an active role in lysosomal degradation. We showed that lysosomal function induced by gemcitabine depends on TFEB, the master regulator of autophagy and lysosomal biogenesis. Interfering with TFEB function considerably limited the clonogenic growth of PDAC cells and hindered the capacity of TFEB-depleted PDAC cells to develop orthotopic tumors.

3.
Cancers (Basel) ; 15(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36765626

RESUMEN

We previously reported that NOD.Scid mice lacking interleukin-15 (IL-15), or IL-15 receptor alpha-chain, develop T-acute lymphoblastic leukemia (T-ALL). To understand the mechanisms by which IL-15 signaling controls T-ALL development, we studied the thymocyte developmental events in IL-15-deficient Scid mice from NOD and C57BL/6 genetic backgrounds. Both kinds of mice develop T-ALL characterized by circulating TCR-negative cells expressing CD4, CD8 or both. Analyses of thymocytes in NOD.Scid.Il15-/- mice prior to T-ALL development revealed discernible changes within the CD4-CD8- double-negative (DN) thymocyte developmental stages and increased frequencies of CD4+CD8+ double-positive cells with a high proportion of TCR-negative CD4+ and CD8+ cells. The DN cells also showed elevated expressions of CXCR4 and CD117, molecules implicated in the expansion of DN thymocytes. T-ALL cell lines and primary leukemic cells from IL-15-deficient NOD.Scid and C57BL/6.Scid mice displayed increased NOTCH1 activation that was inhibited by NOTCH1 inhibitors and blockers of the PI3K/AKT pathway. Primary leukemic cells from NOD.Scid.Il15-/- mice survived and expanded when cultured with MS5 thymic stromal cells expressing Delta-like ligand 4 and supplemented with IL-7 and FLT3 ligand. These findings suggest that IL-15 signaling in the thymus controls T-ALL development from aberrant thymocytes with an impaired DNA repair capacity and increased NOTCH1 activation.

4.
Carcinogenesis ; 33(3): 529-37, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22201186

RESUMEN

Recent evidences suggest that the activity of glycogen synthase kinase-3 (GSK3) contributes to the tumorigenic potential of pancreatic cancer cells through modulation of cell proliferation and survival. However, further investigations are needed to identify GSK3-dependent mechanisms involved in the control of pancreatic cancer cell proliferation and survival. This study was undertaken to provide further support for a role of GSK3 in pancreatic cancer cell growth as well as to identify new cellular and molecular mechanisms involved. Herein, we demonstrate that prolonged inhibition of GSK3 triggers an apoptotic response only in human pancreatic cancer cells but not in human non-transformed pancreatic epithelial cells. We show that prolonged inhibition of GSK3 activity increases Bim messenger RNA and protein expressions. Moreover, we provide evidence that activation of the c-jun N-terminal kinase (JNK) pathway is necessary for the GSK3 inhibition-mediated increase in Bim expression and apoptotic response. Finally, we demonstrate that concomitant inhibition of GSK3 potentiates the death ligand-induced apoptotic response in pancreatic cancer cells but not in non-transformed pancreatic epithelial cells and that this effect also requires JNK activity. Considering that different approaches leading to stimulation of death receptor signaling are under clinical trials for treatment of unresectable or metastatic pancreatic cancer, inhibition of GSK3 could represent an attractive new avenue to improve their effectiveness.


Asunto(s)
Apoptosis , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias Pancreáticas/metabolismo , Antracenos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/biosíntesis , Proteínas Reguladoras de la Apoptosis/genética , Proteína 11 Similar a Bcl2 , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Indoles/farmacología , Sistema de Señalización de MAP Quinasas , Maleimidas/farmacología , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Páncreas/metabolismo , Neoplasias Pancreáticas/patología , Fosforilación , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridinas/farmacología , Pirimidinas/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de Muerte Celular/metabolismo
5.
Am J Physiol Gastrointest Liver Physiol ; 301(4): G719-30, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21737780

RESUMEN

The Ras/Raf/MEK/ERK cascade regulates intestinal epithelial cell proliferation. Indeed, while barely detectable in differentiated cells of the villi, ERK1/2-activated forms are detected in the nucleus of undifferentiated human intestinal crypt cells. In addition, we and others have reported that ERKs are selectively inactivated during enterocyte differentiation. However, whether inactivation of the ERK pathway is necessary for inhibition of both proliferation and induction of differentiation of intestinal epithelial cells is unknown. Human Caco-2/15 cells, undifferentiated crypt IEC-6 cells, and differentiating Cdx3-expressing IEC-6 cells were infected with retroviruses encoding either a hemagglutinin (HA)-tagged MEK1 wild type (wtMEK) or a constitutively active S218D/S222D MEK1 mutant (caMEK). Protein and gene expression was assessed by Western blotting, semiquantitative RT-PCR, and real-time PCR. Morphology was analyzed by transmission electron microscopy. We found that 1) IEC-6/Cdx3 cells formed multicellular layers after confluence and differentiated after 30 days in culture, as assessed by increased polarization, microvilli formation, expression of differentiation markers, and ERK1/2 inhibition; 2) while activated MEK prevented neither the inhibition of ERK1/2 activities nor the differentiation process in postconfluent Caco-2/15 cells, caMEK expression prevented ERK inhibition in postconfluent IEC-6/Cdx3 cells, thus leading to maintenance of elevated ERK1/2 activities; 3) caMEK-expressing IEC-6/Cdx3 cells exhibited altered multicellular structure organization, poorly defined tight junctions, reduced number of microvilli on the apical surface, and decreased expression of the hepatocyte nuclear factor 1α transcription factor and differentiation markers, namely apolipoprotein A-4, fatty acid-binding protein, calbindin-3, mucin 2, alkaline phosphatase, and sucrase-isomaltase; and 4) increased Cdx3 phosphorylation on serine-60 (S60) in IEC-6/Cdx3 cells expressing caMEK led to decreased Cdx2 transactivation potential. These results indicate that inactivation of the ERK pathway is required to ensure the full Cdx2/3 transcriptional activity necessary for intestinal epithelial cell terminal differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Mucosa Intestinal/citología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Animales , Factor de Transcripción CDX2 , Células CACO-2 , Células Cultivadas , Células Epiteliales/metabolismo , Proteínas de Homeodominio/fisiología , Humanos , MAP Quinasa Quinasa 1/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Ratas , Transactivadores/fisiología
6.
Mol Cancer ; 9: 271, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20942929

RESUMEN

BACKGROUND: Among the most harmful of all genetic abnormalities that appear in colorectal cancer (CRC) development are mutations of KRAS and its downstream effector BRAF as they result in abnormal extracellular signal-related kinase (ERK) signaling. In a previous report, we had shown that expression of a constitutive active mutant of MEK1 (caMEK) in normal rat intestinal epithelial cells (IECs) induced morphological transformation associated with epithelial to mesenchymal transition, growth in soft agar, invasion and metastases in nude mice. Results from microarrays comparing control to caMEK-expressing IECs identified the gene encoding for serpinE2, a serine protease inhibitor, as a potential target of activated MEK1. RESULTS: 1- RT-PCR and western blot analyses confirmed the strong up-regulation of serpinE2 expression and secretion by IECs expressing oncogenic MEK, Ras or BRAF. 2- Interestingly, serpinE2 mRNA and protein were also markedly enhanced in human CRC cells exhibiting mutation in KRAS and BRAF. 3- RNAi directed against serpinE2 in caMEK-transformed rat IECs or in human CRC cell lines HCT116 and LoVo markedly decreased foci formation, anchorage-independent growth in soft agarose, cell migration and tumor formation in nude mice. 4- Treatment of CRC cell lines with U0126 markedly reduced serpinE2 mRNA levels, indicating that expression of serpinE2 is likely dependent of ERK activity. 5- Finally, Q-PCR analyses demonstrated that mRNA levels of serpinE2 were markedly increased in human adenomas in comparison to healthy adjacent tissues and in colorectal tumors, regardless of tumor stage and grade. CONCLUSIONS: Our data indicate that serpinE2 is up-regulated by oncogenic activation of Ras, BRAF and MEK1 and contributes to pro-neoplastic actions of ERK signaling in intestinal epithelial cells. Hence, serpinE2 may be a potential therapeutic target for colorectal cancer treatment.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Serpina E2/metabolismo , Animales , Western Blotting , Butadienos/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/genética , Células HCT116 , Humanos , Técnicas In Vitro , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Ratones , Ratones Desnudos , Nitrilos/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Interferencia de ARN , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serpina E2/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas ras/genética , Proteínas ras/metabolismo
7.
Endocrinology ; 150(1): 87-97, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18772243

RESUMEN

The homeodomain transcription factor insulin promoter factor (IPF)-1/pancreatic duodenal homeobox (PDX)-1 plays a crucial role in both pancreas development and maintenance of beta-cell function. Targeted disruption of the Ipf1/Pdx1 gene in beta-cells of mice leads to overt diabetes and reduced Ipf1/Pdx1 gene expression results in decreased insulin expression and secretion. In humans, mutations in the IPF1 gene have been linked to diabetes. Hence, the identification of molecular mechanisms regulating the transcriptional activity of this key transcription factor is of great interest. Herein we analyzed homeodomain-interacting protein kinase (Hipk) 2 expression in the embryonic and adult pancreas by in situ hybridization and RT-PCR. Moreover, we functionally characterized the role of HIPK2 in regulating IPF1/PDX1 transcriptional activity by performing transient transfection experiments and RNA interference. We show that Hipk2 is expressed in the developing pancreatic epithelium from embryonic d 12-15 but that the expression becomes preferentially confined to pancreatic endocrine cells at later developmental stages. Moreover, we show that HIPK2 positively influences IPF1/PDX1 transcriptional activity and that the kinase activity of HIPK2 is required for this effect. We also demonstrate that HIPK2 directly phosphorylates the C-terminal portion of IPF1/PDX1. Taken together, our data provide evidence for a new mechanism by which IPF1/PDX1 transcriptional activity, and thus possibly pancreas development and/or beta-cell function, is regulated.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Homeodominio/genética , Páncreas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/genética , Envejecimiento , Animales , Cartilla de ADN , Regulación de la Expresión Génica , Glutatión Transferasa/genética , Glutatión Transferasa/aislamiento & purificación , Glutatión Transferasa/metabolismo , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Islotes Pancreáticos/fisiología , Ratones , Proteínas Nucleares/metabolismo , Páncreas/crecimiento & desarrollo , Biosíntesis de Proteínas , ARN/genética , ARN/aislamiento & purificación , ARN Interferente Pequeño/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transactivadores/metabolismo , Transcripción Genética
8.
Sci Rep ; 7(1): 5034, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698562

RESUMEN

Since the generation of a mouse strain conditionally expressing the active intracellular domain of Notch1 (N1ICD), many laboratories have exploited this model (RosaN1-ICD) to assess the impact of constitutive Notch1 signalling activation in normal and pathological processes. It should be underscored that Cre-recombination leads to the expression of a C-terminally truncated form of N1ICD (N1ICDdC) in the RosaN1-ICD mutant mice. Given that no studies were undertaken to delineate whether deletion of this region leaves intact N1ICD function, stable cell lines with single targeted integration of inducible N1ICD and N1ICDdC were generated. We found that C-terminal deletion of N1ICD stabilized the protein but did not promote the activity of Notch responsive promoters. Furthermore, despite higher expression levels, N1ICDdC failed to phenocopy N1ICD in the promotion of anchorage-independent growth. Our results thus suggest that the C-terminal region of N1ICD plays a role in shaping the Notch response. Therefore, it should be taken into consideration that N1ICD is truncated when interpreting phenotypes of RosaN1-ICD mutant mice.


Asunto(s)
Receptor Notch1/química , Receptor Notch1/metabolismo , Eliminación de Secuencia , Transducción de Señal , Línea Celular Tumoral , Proliferación Celular , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Relación Estructura-Actividad
9.
PLoS One ; 8(12): e85502, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24392017

RESUMEN

Activation of the NOTCH receptors relies on their intracellular proteolysis by the gamma-secretase complex. This cleavage liberates the NOTCH intracellular domain (NIC) thereby allowing the translocation of NIC towards the nucleus to assemble into a transcriptional platform. Little information is available regarding the regulatory steps operating on NIC following its release from the transmembrane receptor up to its association with transcriptional partners. Interfering with these regulatory steps might potentially influences the nuclear outcome of NOTCH signalling. Herein, we exploited a reliable model to study the molecular events occurring subsequent to NOTCH1 cleavage. In pancreatic cancer cells, pulse of NOTCH1 activation led to increased expression of NOTCH target genes namely HES1 and c-MYC. We uncovered that, upon its release, the NOTCH1 intracellular domain, NIC1, undergoes a series of post-translational modifications that include phosphorylation. Most interestingly, we found that activation of the MEK/ERK pathway promotes HES1 expression. Inhibition of the gamma-secretase complex prevented the MEK/ERK-induced HES1 expression suggesting a NOTCH-dependent mechanism. Finally, higher levels of NIC1 were found associated with its transcriptional partners [CBF1, Su(H) and LAG-1] (CSL) and MASTERMIND-LIKE 1 (MAML1) upon MEK/ERK activation providing a potential mechanism whereby the MEK/ERK pathway promotes expression of NOTCH target genes. For the first time, our data exposed a signalling pathway, namely the MEK/ERK pathway that positively impacts on NOTCH nuclear outcome.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias Pancreáticas/patología , Receptor Notch1/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Calcio/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Proteínas de Homeodominio/metabolismo , Humanos , Espacio Intracelular/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Receptor Notch1/química , Factor de Transcripción HES-1
10.
J Biol Chem ; 281(10): 6395-403, 2006 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-16407209

RESUMEN

The transcription factor IPF1/PDX1 plays a crucial role in both pancreas development and maintenance of beta-cell function. Targeted disruption of this transcription factor in beta-cells leads to diabetes, whereas reduced expression levels affect insulin expression and secretion. Therefore, it is essential to determine molecular mechanisms underlying the regulation of this key transcription factor on mRNA levels and, most importantly, on protein levels. Here we show that a minor portion of IPF1/PDX1 is phosphorylated on serine 61 and/or serine 66 in pancreatic beta-cells. This phosphorylated form of IPF1/PDX1 preferentially accumulates following proteasome inhibition, an effect that is prevented by inhibition of glycogen synthase kinase 3 (GSK3) activity. Oxidative stress, which is associated with the diabetic state, (i) increases IPF1/PDX1 Ser61 and/or Ser66 phosphorylation and (ii) increases the degradation rate and decreases the half-life of IPF-1/PDX-1 protein. In addition, we provide evidence that GSK3 activity participates in oxidative stress-induced effects on beta-cells. Thus, this current study uncovers a new mechanism that might contribute to diminished levels of IPF1/PDX1 protein and beta-cell dysfunction during the progression of diabetes.


Asunto(s)
Glucógeno Sintasa Quinasa 3/fisiología , Proteínas de Homeodominio/metabolismo , Transactivadores/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Humanos , Células Secretoras de Insulina/metabolismo , Ratones , Estrés Oxidativo/fisiología , Páncreas/citología , Páncreas/metabolismo , Fosforilación , Inhibidores de Proteasoma , Serina/metabolismo , Transactivadores/genética
11.
J Cell Physiol ; 202(1): 178-90, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15389533

RESUMEN

UNLABELLED: Intestinal epithelial cell differentiation is a complex process in which many different signaling pathways are likely involved. An increase in the intracellular levels of cyclic AMP (cAMP) has been shown to inhibit enterocyte differentiation; however, the mechanisms through which cAMP/PKA signaling modulates differentiation of human intestinal epithelial cells are still not well understood. Herein, we report that: (1) treatment of Caco-2/15 cells with 8Br-cAMP repressed sucrase-isomaltase and villin protein expression and strongly attenuated morphological differentiation of enterocyte-like features in Caco-2/15 such as epithelial cell polarity and brush border formation; (2) treatment of confluent Caco-2/15 cells with 8Br-cAMP led to a strong decrease in F-actin localized at cell-cell contact sites along with a reduced amount of E-cadherin and catenins, but not of ZO-1, at cell-cell interfaces concomitant with a decreased association of these proteins with the actin cytoskeleton; (3) inhibition of PKA by H89 prevented disruption of adherens junctions by extracellular calcium depletion; (4) treatment of Caco-2/15 cells with 8Br-cAMP prevented the recruitment and activation of p85/PI-3K to E-cadherin-mediated cell-cell contacts, an important event in the assembly of adherens junctions and differentiation of these cells; (5) E-cadherin appears to be phosphorylated on serine in vivo in a PKA-dependent mechanism. CONCLUSION: Our studies show that cAMP/PKA signaling negatively regulates adherens junction integrity as well as morphological and functional differentiation of intestinal epithelial cells.


Asunto(s)
Uniones Adherentes/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Células Epiteliales/enzimología , Mucosa Intestinal/enzimología , Mucosa Intestinal/crecimiento & desarrollo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Actinas/metabolismo , Uniones Adherentes/enzimología , Uniones Adherentes/ultraestructura , Células CACO-2 , Cadherinas/metabolismo , Calcio/metabolismo , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Diferenciación Celular/fisiología , Polaridad Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Regulación hacia Abajo/fisiología , Inhibidores Enzimáticos/farmacología , Células Epiteliales/ultraestructura , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Mucosa Intestinal/ultraestructura , Proteínas de Microfilamentos/metabolismo , Microscopía Electrónica de Transmisión , Microvellosidades/metabolismo , Microvellosidades/ultraestructura , Complejo Sacarasa-Isomaltasa/metabolismo , Transactivadores/metabolismo , alfa Catenina , beta Catenina
12.
Biochem Biophys Res Commun ; 311(1): 121-8, 2003 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-14575703

RESUMEN

We have recently shown that elevated extracellular signal-regulated kinase (ERK) activities stimulate proliferation of intestinal cells whereas low sustained levels of ERK activities correlate with Gl arrest and are required for expression of several enterocyte differentiation proteins. In an attempt to clarify how ERK1/2 regulates intestinal differentiation, the present study assessed the subcellular distribution and regulation of ERK proteins and activities in differentiated enterocytes. We report that (1) ERK1/2 and their upstream modulators Ras, p85 (PI-3K), Rac1, and MEK1 are found in the brush border; (2) brush border-associated ERK1/2 are stimulated by EGF and feeding; (3) immunoblotting of proteins phosphorylated on SP/K motif suggests the presence of ERK substrates in the brush border, one of which could be actin; and (4) pharmacological inhibition of ERK alters microvilli architecture. Our results suggest that ERK may play important roles in the control of microvilli structure and possibly, in brush border-associated responses in differentiated intestinal epithelial cells.


Asunto(s)
Mucosa Intestinal/embriología , Mucosa Intestinal/enzimología , Mucosa Intestinal/ultraestructura , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Adaptación Fisiológica/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Mucosa Intestinal/citología , Yeyuno , Masculino , Microvellosidades/enzimología , Microvellosidades/ultraestructura , Proteína Quinasa 3 Activada por Mitógenos , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Distribución Tisular
13.
Am J Physiol Gastrointest Liver Physiol ; 286(5): G736-46, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-14701721

RESUMEN

The mitogen-activated protein kinase cascade operates downstream of Ras to convey cell-surface signals to the nucleus via nuclear translocation of ERK1 and ERK2. We and others have recently demonstrated that activation of ERK1/2 by growth factors is required for proliferation of intestinal epithelial crypt cells. However, it remained to be established whether ERK1/2 activation alone was sufficient to trigger intestinal epithelial cell (IEC) proliferation. To this aim, retrovirus encoding the hemagglutinin-tagged MAPK/ERK kinase (MEK)1 wild type (wtMEK), the upstream activator of ERK1/2, or a constitutively active mutant of MEK1 (MEK1-S218D/S222D; caMEK) were used to infect nonimmortalized human normal intestinal epithelial crypt cell cultures [human intestinal epithelial cells (HIEC)] and rodent immortalized intestinal crypt cells (IEC-6). Stable expression of caMEK but not wtMEK in HIEC led to the irreversible arrest of cellular proliferation (premature senescence). Concomitant with the onset of cell-cycle arrest was the induction of the cyclin-dependent kinase inhibitors p21(Cip), p53, and p16(INK4A). By contrast, overexpression of caMEK in IEC-6 cells induced growth factor relaxation for DNA synthesis, promoted morphological transformation and growth in soft agar, and did not affect expression of p21(Cip), p53, and p16(INK4A). We provided evidences that ERK1b, an alternatively spliced isoform of ERK1, is activated and may contribute to the deregulation of contact inhibition cell growth and transformation of these cells. Constitutive activation of MEK in IECs can produce either premature senescence or forced mitogenesis depending on the integrity of a senescence program controlled by the cell cycle inhibitors p53, p16(INK4A), and p21(CIP).


Asunto(s)
Mucosa Intestinal/citología , Mucosa Intestinal/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Transducción de Señal/fisiología , Animales , Línea Celular , Senescencia Celular/fisiología , Fase G1 , Humanos , MAP Quinasa Quinasa 1 , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación , Proteínas/metabolismo , Ratas
14.
J Cell Physiol ; 199(1): 32-9, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14978732

RESUMEN

In vitro experiments have shown that the establishment of cell-cell contacts in intestinal epithelial cell cultures is a critical step in initiating ERK inhibition, cell cycle arrest, and induction of the differentiation process. Herein, we determined the mechanisms through which E-cadherin-mediated cell-cell contacts modulate the ERK pathway in intestinal epithelial cells. We report that: (1) removal of calcium from the culture medium of newly confluent Caco-2/15 cells (30 min, 4 mM EGTA) results in the disruption of both adherens and tight junctions and clearly decreases Akt phosphorylation while increasing MEK and ERK activities. Akt, MEK, and ERK activation levels return to control levels 60 min after calcium restoration; (2) the use of E-cadherin blocking antibodies efficiently prevents Akt phosphorylation and MEK-ERK inhibition after 70 min of calcium restoration; (3) using the PI3K inhibitor LY294002 (15 microM) in calcium switch experiments, we demonstrate that the assembly of adherens junctions activates Akt activity and triggers the inhibition of ERK1/2 activities in a PI3K-dependent manner; (4) adenoviral infection of confluent Caco-2/15 cells with a constitutively active mutant of Akt1 strongly represses ERK1/2 activities; (5) inhibition of PI3K abolishes Akt activity but leads to a rapid and sustained activation of the MEK-ERK1/2 in confluent differentiating Caco-2/15 cells, but not in undifferentiated growing Caco-2/15 cells. Our data suggest that E-cadherin engagement leads to MEK/ERK inhibition in a PI3K/Akt-dependent pathway. This mechanism may account for the role of E-cadherin in proliferation/differentiation transition along the crypt-villus axis of the human intestinal epithelium.


Asunto(s)
Cadherinas/fisiología , Comunicación Celular/fisiología , Mucosa Intestinal/fisiología , Quinasa 1 de Quinasa de Quinasa MAP , Quinasas Quinasa Quinasa PAM/fisiología , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/fisiología , Células CACO-2 , Calcio/metabolismo , Comunicación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Quelantes/farmacología , Regulación hacia Abajo , Ácido Egtácico/farmacología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Humanos , Immunoblotting , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal/fisiología
15.
J Biol Chem ; 277(10): 8226-34, 2002 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-11756422

RESUMEN

The signaling pathways mediating human intestinal epithelial cell differentiation remain largely undefined. Phosphatidylinositol 3-kinase (PI3K) is an important modulator of extracellular signals, including those elicited by E-cadherin-mediated cell-cell adhesion, which plays an important role in maintenance of the structural and functional integrity of epithelia. In this study, we analyzed the involvement of PI3K in the differentiation of human intestinal epithelial cells. We showed that inhibition of PI3K signaling in Caco-2/15 cells repressed sucrase-isomaltase and villin protein expression. Morphological differentiation of enterocyte-like features in Caco-2/15 cells such as epithelial cell polarity and brush-border formation were strongly attenuated by PI3K inhibition. Immunofluorescence and immunoprecipitation experiments revealed that PI3K was recruited to and activated by E-cadherin-mediated cell-cell contacts in confluent Caco-2/15 cells, and this activation appears to be essential for the integrity of adherens junctions and association with the cytoskeleton. We provide evidence that the assembly of calcium-dependent adherens junctions led to a rapid and remarkable increase in the state of activation of Akt and p38 MAPK pathways and that this increase was blocked in the presence of anti-E-cadherin antibodies and PI3K inhibitor. Therefore, our results indicate that PI3K promotes assembly of adherens junctions, which, in turn, control p38 MAPK activation and enterocyte differentiation.


Asunto(s)
Uniones Adherentes/química , Células Epiteliales/citología , Células Epiteliales/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Células CACO-2 , Cadherinas/metabolismo , Calcio/metabolismo , Adhesión Celular , Diferenciación Celular , Línea Celular , Movimiento Celular , Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Genes Reporteros , Vectores Genéticos , Humanos , Immunoblotting , Intestinos/citología , Luciferasas/metabolismo , Microscopía Electrónica , Microscopía Fluorescente , Proteína Quinasa 14 Activada por Mitógenos , Modelos Biológicos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Factores de Tiempo , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda