Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biol Chem ; 296: 100338, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33497624

RESUMEN

ATPases Associated with diverse cellular Activities (AAA+) are a superfamily of proteins that typically assemble into hexameric rings. These proteins contain AAA+ domains with two canonical motifs (Walker A and B) that bind and hydrolyze ATP, allowing them to perform a wide variety of different functions. For example, AAA+ proteins play a prominent role in cellular proteostasis by controlling biogenesis, folding, trafficking, and degradation of proteins present within the cell. Several central proteolytic systems (e.g., Clp, Deg, FtsH, Lon, 26S proteasome) use AAA+ domains or AAA+ proteins to unfold protein substrates (using energy from ATP hydrolysis) to make them accessible for degradation. This allows AAA+ protease systems to degrade aggregates and large proteins, as well as smaller proteins, and feed them as linearized molecules into a protease chamber. This review provides an up-to-date and a comparative overview of the essential Clp AAA+ protease systems in Cyanobacteria (e.g., Synechocystis spp), plastids of photosynthetic eukaryotes (e.g., Arabidopsis, Chlamydomonas), and apicoplasts in the nonphotosynthetic apicomplexan pathogen Plasmodium falciparum. Recent progress and breakthroughs in identifying Clp protease structures, substrates, substrate adaptors (e.g., NblA/B, ClpS, ClpF), and degrons are highlighted. We comment on the physiological importance of Clp activity, including plastid biogenesis, proteostasis, the chloroplast Protein Unfolding Response, and metabolism, across these diverse lineages. Outstanding questions as well as research opportunities and priorities to better understand the essential role of Clp systems in cellular proteostasis are discussed.


Asunto(s)
Apicoplastos/enzimología , Cianobacterias/enzimología , Endopeptidasa Clp/metabolismo , Plastidios/enzimología , Endopeptidasa Clp/química , Plasmodium falciparum/enzimología , Proteómica , Proteostasis , Transducción de Señal , Especificidad por Sustrato
2.
Mol Cell Proteomics ; 18(7): 1285-1306, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30962257

RESUMEN

The chloroplast is a major plant cell organelle that fulfills essential metabolic and biosynthetic functions. Located at the interface between the chloroplast and other cell compartments, the chloroplast envelope system is a strategic barrier controlling the exchange of ions, metabolites and proteins, thus regulating essential metabolic functions (synthesis of hormones precursors, amino acids, pigments, sugars, vitamins, lipids, nucleotides etc.) of the plant cell. However, unraveling the contents of the chloroplast envelope proteome remains a difficult challenge; many proteins constituting this functional double membrane system remain to be identified. Indeed, the envelope contains only 1% of the chloroplast proteins (i.e. 0.4% of the whole cell proteome). In other words, most envelope proteins are so rare at the cell, chloroplast, or even envelope level, that they remained undetectable using targeted MS studies. Cross-contamination of chloroplast subcompartments by each other and by other cell compartments during cell fractionation, impedes accurate localization of many envelope proteins. The aim of the present study was to take advantage of technologically improved MS sensitivity to better define the proteome of the chloroplast envelope (differentiate genuine envelope proteins from contaminants). This MS-based analysis relied on an enrichment factor that was calculated for each protein identified in purified envelope fractions as compared with the value obtained for the same protein in crude cell extracts. Using this approach, a total of 1269 proteins were detected in purified envelope fractions, of which, 462 could be assigned an envelope localization by combining MS-based spectral count analyses with manual annotation using data from the literature and prediction tools. Many of such proteins being previously unknown envelope components, these data constitute a new resource of significant value to the broader plant science community aiming to define principles and molecular mechanisms controlling fundamental aspects of plastid biogenesis and functions.


Asunto(s)
Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Espectrometría de Masas/métodos , Proteoma/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Extractos Celulares , Bases de Datos de Proteínas , Proteínas de la Membrana/metabolismo , Fracciones Subcelulares/metabolismo
3.
J Biol Chem ; 294(46): 17543-17554, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31578278

RESUMEN

Cell compartmentalization is an essential process by which eukaryotic cells separate and control biological processes. Although calmodulins are well-known to regulate catalytic properties of their targets, we show here their involvement in the subcellular location of two plant proteins. Both proteins exhibit a dual location, namely in the cytosol in addition to their association to plastids (where they are known to fulfil their role). One of these proteins, ceQORH, a long-chain fatty acid reductase, was analyzed in more detail, and its calmodulin-binding site was identified by specific mutations. Such a mutated form is predominantly targeted to plastids at the expense of its cytosolic location. The second protein, TIC32, was also shown to be dependent on its calmodulin-binding site for retention in the cytosol. Complementary approaches (bimolecular fluorescence complementation and reverse genetics) demonstrated that the calmodulin isoform CAM5 is specifically involved in the retention of ceQORH in the cytosol. This study identifies a new role for calmodulin and sheds new light on the intriguing CaM-binding properties of hundreds of plastid proteins, despite the fact that no CaM or CaM-like proteins were identified in plastids.


Asunto(s)
Proteínas de Arabidopsis/genética , Calmodulina/genética , Compartimento Celular/genética , Proteínas de Cloroplastos/genética , Proteínas de la Membrana/genética , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Sitios de Unión/genética , Señalización del Calcio/genética , Calmodulina/química , Proteínas de Cloroplastos/química , Cloroplastos/química , Cloroplastos/genética , Citosol/química , Proteínas de la Membrana/química , Plastidios/química , Plastidios/genética , Unión Proteica/genética
5.
Front Plant Sci ; 14: 1193905, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426978

RESUMEN

Since decades plant lipid droplets (LDs) are described as storage organelles accumulated in seeds to provide energy for seedling growth after germination. Indeed, LDs are the site of accumulation for neutral lipids, predominantly triacylglycerols (TAGs), one of the most energy-dense molecules, and sterol esters. Such organelles are present in the whole plant kingdom, from microalgae to perennial trees, and can probably be found in all plant tissues. Several studies over the past decade have revealed that LDs are not merely simple energy storage compartments, but also dynamic structures involved in diverse cellular processes like membrane remodeling, regulation of energy homeostasis and stress responses. In this review, we aim to highlight the functions of LDs in plant development and response to environmental changes. In particular, we tackle the fate and roles of LDs during the plant post-stress recovery phase.

6.
Trends Plant Sci ; 24(10): 917-926, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31300194

RESUMEN

Protein amino (N) termini are major determinants of protein stability in the cytosol of eukaryotes and prokaryotes, conceptualized in the N-end rule pathway, lately referred to as N-degron pathways. Here we argue for the existence of N-degron pathways in plastids of apicomplexa, algae, and plants. The prokaryotic N-degron pathway depends on a caseinolytic protease (CLP) S recognin (adaptor) for the recognition and delivery of N-degron-bearing substrates to CLP chaperone-protease systems. Diversified CLP systems are found in chloroplasts and nonphotosynthetic plastids, including CLPS homologs that specifically interact with a subset of N-terminal residues and stromal proteins. Chloroplast N-terminome data show enrichment of classic stabilizing residues [Ala (A), Ser (S), Val (V), Thr (T)] and avoidance of charged and large hydrophobic residues. We outline experimental test strategies for plastid N-degron pathways.


Asunto(s)
Endopeptidasa Clp , Plastidios , Cloroplastos
7.
Methods Mol Biol ; 1829: 73-85, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29987715

RESUMEN

Plastids are semiautonomous organelles like mitochondria, and derive from a cyanobacterial ancestor that was engulfed by a host cell. During evolution, they have recruited proteins originating from the nuclear genome, and only parts of their ancestral metabolic properties were conserved and optimized to limit functional redundancy with other cell compartments. Furthermore, large disparities in metabolic functions exist among various types of plastids, and the characterization of their various metabolic properties is far from being accomplished. In this review, we provide an overview of the main functions, known to be achieved by plastids or shared by plastids and other compartments of the cell. In short, plastids appear at the heart of all main plant functions.


Asunto(s)
Plastidios/fisiología , Evolución Biológica , Metabolismo Energético , Plastidios/ultraestructura
8.
J Vis Exp ; (140)2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30394394

RESUMEN

Chloroplasts are major components of plant cells. Such plastids fulfill many crucial functions, such as assimilation of carbon, sulfur and nitrogen as well as synthesis of essential metabolites. These organelles consist of the following three key sub-compartments. The envelope, characterized by two membranes, surrounds the organelle and controls the communication of the plastid with other cell compartments. The stroma is the soluble phase of the chloroplast and the main site where carbon dioxide is converted into carbohydrates. The thylakoid membrane is the internal membrane network consisting of grana (flat compressed sacs) and lamellae (less dense structures), where oxygenic photosynthesis takes place. The present protocol describes step by step procedures required for the purification, using differential centrifugations and Percoll gradients, of intact chloroplasts from Arabidopsis, and their fractionation, using sucrose gradients, in three sub-compartments (i.e., envelope, stroma, and thylakoids). This protocol also provides instructions on how to assess the purity of these fractions using markers associated to the various chloroplast sub-compartments. The method described here is valuable for subplastidial localization of proteins using immunoblotting, but also for subcellular and subplastidial proteomics and other studies.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Immunoblotting/métodos , Proteínas/metabolismo , Proteómica/métodos , Arabidopsis/metabolismo
9.
Methods Mol Biol ; 1829: 395-406, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29987736

RESUMEN

Plastids contain several key subcompartments. The two limiting envelope membranes (inner and outer membrane of the plastid envelope with an intermembrane space between), an aqueous phase (stroma), and an internal membrane system terms (thylakoids) formed of flat compressed vesicles (grana) and more light structures (lamellae). The thylakoid vesicles delimit another discrete soluble compartment, the thylakoid lumen. AT_CHLORO ( http://at-chloro.prabi.fr/at_chloro/ ) is a unique database supplying information about the subplastidial localization of proteins. It was created from simultaneous proteomic analyses targeted to the main subcompartments of the chloroplast from Arabidopsis thaliana (i.e., envelope, stroma, thylakoid) and to the two subdomains of thylakoid membranes (i.e., grana and stroma lamellae). AT_CHLORO assembles several complementary information (MS-based experimental data, curated functional annotations and subplastidial localization, links to other public databases and references) which give a comprehensive overview of the current knowledge about the subplastidial localization and the function of chloroplast proteins, with a specific attention given to chloroplast envelope proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Biología Computacional/métodos , Bases de Datos Factuales , Plastidios/metabolismo , Proteómica/métodos , Cloroplastos/metabolismo , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda