Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Crit Rev Food Sci Nutr ; 63(30): 10483-10498, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35647889

RESUMEN

In recent years, various types of plant-based meat, dairy, and seafood alternatives merged in the health-conscious consumer market. However, plant-based alternatives present complexity in terms of nutritional profile and absorption of nutrients after food ingestion. Thus, this review summarizes current strategies of plant-based alternatives and their nutritional analysis along with gastrointestinal digestion and bioavailability. Additionally, regulatory frameworks, labeling claims, and consumer perception of plant-based alternatives are discussed thoroughly with a focus on status and future prospects. Plant-based alternatives become a mainstream of many food-processing industries with increasing alternative plant-based food manufacturing industries around the world. Novel food processing technologies could enable the improving of the taste of plant-based foods. However, it is still a technical challenge in production of plant-based alternatives with authentic meaty flavor. In vitro gastrointestinal digestion studies revealed differences in the digestion and absorption of plant-based alternatives and animal-based foods due to their protein type, structure, composition, anti-nutritional factors, fibers, and polysaccharides. Overall, plant-based alternatives may facilitate the replacement of animal-based foods; however, improvements in nutritional profile and in vitro digestion should be addressed by application of novel processing technologies and food fortification. The specific legislation standards should be necessary to avoid consumer misleading of plant-based alternatives.


Asunto(s)
Manipulación de Alimentos , Plantas , Animales , Percepción , Digestión
2.
Molecules ; 27(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364161

RESUMEN

This manuscript aimed to optimise the encapsulation of Thymus capitatus essential oil into nanoemulsion. Response Surface Methodology results were best fitted into polynomial models with regression coefficient values of more than 0.95. The optimal nanoemulsion showed nanometer-sized droplets (380 nm), a polydispersity index less than 0.5, and a suitable Zeta potential (-10.3 mV). Stability results showed that nanoemulsions stored at 4 °C were stable with the lowest d3,2, PolyDispersity Index (PDI), and pH (day 11). Significant ameliorations in the capacity to neutralise DPPH radical after the encapsulation of the antimicrobial efficacy of thyme essential oil were recorded. S. typhimurium growth inhibition generated by nanoencapsulated thyme essential oil was 17 times higher than by bulk essential oil. The sensory analysis highlighted that the encapsulation of thyme essential oil improved enriched milk's sensory appreciation. Indeed, 20% of the total population attributed a score of 4 and 5 on the scale used for milk enriched with nanoemulsion. In comparison, only 11% attributed the same score to milk enriched with bulk essential oil. The novel nanometric delivery system presents significant interest for agroalimentary industries.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Thymus (Planta) , Animales , Aceites Volátiles/farmacología , Emulsiones , Antiinfecciosos/farmacología , Leche/microbiología
3.
Langmuir ; 35(30): 9923-9933, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31264885

RESUMEN

Oppositely charged proteins can form soluble assemblies that under specific physical chemical conditions lead to liquid-liquid phase separation, also called heteroprotein coacervation. Increasing evidence suggests that surface charge anisotropy plays a key role in heteroprotein complexation, and coacervation. Here, we investigated complexation of an acidic protein, ß-lactoglobulin (BLG), with two basic proteins, rapeseed napin (NAP) and lysozyme (LYS), of similar net charge and size but differing in surface charge distribution. Using turbidity measurements and isothermal titration calorimetry, we confirmed that LYS binds BLG as expected from previous studies. This interaction leads to two types of phase separation phenomena, depending on pH: liquid-solid phase separation in the case of strong electrostatic attraction and liquid-liquid phase separation for weaker attraction. More interestingly, we showed using dynamic light scattering that NAP interacts with BLG, resulting in formation of assemblies in the nanometer size range. The formation of assemblies was also evident when modeling the interactions using Brownian dynamics for both BLG + NAP and BLG + LYS. Similarly, to DLS, BLG and NAP formed smaller assemblies than BLG with LYS. The molecular details rather than the net charge of BLG and NAP may therefore play a role in their assembly. Furthermore, simulated BLG + NAP assemblies were larger than those experimentally detected by DLS. We discuss the discrepancy between experiments and simulations in relation to the limitations of modelling precisely the molecular characteristics of proteins.


Asunto(s)
Lactoglobulinas/química , Muramidasa/química , Multimerización de Proteína , Animales , Bovinos , Modelos Moleculares , Estructura Cuaternaria de Proteína , Termodinámica
4.
Crit Rev Food Sci Nutr ; 57(2): 335-343, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26067872

RESUMEN

Current opinion strongly links nutrition and health. Among nutrients, proteins, and peptides which are encrypted in their sequences and released during digestion could play a key role in improving health. These peptides have been claimed to be active on a wide spectrum of biological functions or diseases, including blood pressure and metabolic risk factors (coagulation, obesity, lipoprotein metabolism, and peroxidation), gut and neurological functions, immunity, cancer, dental health, and mineral metabolism. A majority of studies involved dairy peptides, but the properties of vegetal, animal, and sea products were also assessed. However, these allegations are mainly based on in vitro and experimental studies which are seldom confirmed in humans. This review focused on molecules which were tested in humans, and on the mechanisms explaining discrepancies between experimental and human studies.


Asunto(s)
Proteínas en la Dieta/metabolismo , Suplementos Dietéticos , Manipulación de Alimentos , Modelos Biológicos , Péptidos/metabolismo , Hidrolisados de Proteína/metabolismo , Animales , Proteínas en la Dieta/efectos adversos , Proteínas en la Dieta/uso terapéutico , Suplementos Dietéticos/efectos adversos , Digestión , Fermentación , Humanos , Carne/efectos adversos , Proteínas de la Leche/efectos adversos , Proteínas de la Leche/metabolismo , Fragmentos de Péptidos/efectos adversos , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/uso terapéutico , Péptidos/efectos adversos , Péptidos/uso terapéutico , Hidrolisados de Proteína/efectos adversos , Hidrolisados de Proteína/uso terapéutico , Estabilidad Proteica , Reproducibilidad de los Resultados , Alimentos Marinos/efectos adversos
5.
Langmuir ; 32(31): 7821-8, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27352848

RESUMEN

Under specific conditions, mixing two oppositely charged proteins induces liquid-liquid phase separation. The denser phase, or coacervate phase, can be potentially applied as a system to protect or encapsulate different bioactive molecules with a broad range of food and/or medical applications. The optimization of the design and efficiency of such systems requires a precise understanding of the structure and the equilibrium of the nanocomplexes formed within the coacervate. Here, we report on the nanocomplexes and the dynamics of the coacervates formed by two well-known, oppositely charged proteins ß-lactoglobulin (ß-LG, pI ≈ 5.2) and lactoferrin (LF, pI ≈ 8.5). Fluorescence recovery after photobleaching (FRAP) and solid-state nuclear magnetic resonance (NMR) experiments indicate the coexistence of several nanocomplexes as the primary units for the coacervation. To our knowledge, this is the first evidence of the occurrence of an equilibrium between quite unstable nanocomplexes in the coacervate phase. Combined with in silico docking experiments, these data support the fact that coacervation in the present heteroprotein system depends not only on the structural composition of the coacervates but also on the association rates of the proteins forming the nanocomplexes.


Asunto(s)
Lactoferrina/química , Lactoglobulinas/química , Complejos Multiproteicos/química , Animales , Sitios de Unión , Bovinos , Recuperación de Fluorescencia tras Fotoblanqueo , Simulación del Acoplamiento Molecular , Espectroscopía de Protones por Resonancia Magnética , Electricidad Estática , Termodinámica
6.
Langmuir ; 31(45): 12481-8, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26488446

RESUMEN

In the study presented here, we investigated the interaction at pH 5.5 between folic acid (FA) and lactoferrin (LF), a positively charged protein. We found a binding constant Ka of 10(5) M(-1) and a high stoichiometry of 10 mol of FA/mol of LF. The size and charge of the complexes formed evolved during titration experiments. Increasing the ionic strength to 50 mM completely abolished the isothermal titration calorimetry (ITC) signal, suggesting the predominance of electrostatic interactions in the exothermic binding obtained. We developed a theoretical model that explains the complex triphasic ITC profile. Our results revealed a two-step mechanism: FA/LF interaction followed by self-association of the complexes thus formed. We suggest that 10 FA molecules bind to LF to form saturated reactive complexes (FA10/LF) that further self-associate into aggregates with a finite size of around 15 nm. There is thus a critical saturation degree of the protein, above which the self-association can take place. We present here the first results that provide comprehensive details of the thermodynamics of FA/LF complexation-association. Given the high stoichiometry, allowing a load of 55 mg of FA/g of LF, we suggest that FA/LF aggregates would be an effective vehicle for FA in fortified drinks.


Asunto(s)
Ácido Fólico/química , Lactoferrina/química , Agregado de Proteínas , Calorimetría/métodos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Modelos Químicos , Concentración Osmolar , Tamaño de la Partícula , Unión Proteica , Electricidad Estática , Termodinámica
7.
Food Res Int ; 187: 114419, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763669

RESUMEN

Combination of plant and animal protein diet is becoming a valuable source of nutrition in the modern diet due to the synergistic functional properties inherent in these protein complexes. Moreover, the synergy between animal and plant proteins can contribute to the high stability and improved solubility of the encapsulated bioactive ingredients (e.g., essential oils). Therefore, the study was designed to evaluate the plant (pea protein (PP) and lupine protein (LP)) and animal protein (whey protein, WP) mixed systems as a wall material for microencapsulation of manuka essential oil, as an example of bioactive compound. Moreover, physicochemical properties and in vitro release profile of encapsulated manuka essential oil were studied. Manuka essential oil microcapsules exhibited low moisture content (5.3-7.1 %) and low water activity (0.33-0.37) with a solubility of 53.7-68.1 %. Change in wall material ratio significantly affected the color of microcapsules, while microcapsules prepared with 1:1 protein/oil ratio demonstrated a high encapsulation efficiency (90.4 % and 89.4 %) for protein mixed systems (PP + WP and LP + WP), respectively. Microcapsules further showed low values for lipid oxidation with a high oxidative stability and antioxidant activity (62.1-87.0 %). The zero order and Korsmeyer-Peppas models clearly explained the release mechanism of encapsulated oil, which was dependent on the type and concentration of the protein mixed used. The findings demonstrated that the protein mixed systems successfully encapsulated the manuka essential oil with controlled release and high oxidative stability, indicating the suitability of the protein mixed systems as a carrier in encapsulation and application potential in development of encapsulated functional foods.


Asunto(s)
Cápsulas , Composición de Medicamentos , Aceites Volátiles , Solubilidad , Aceites Volátiles/química , Proteína de Suero de Leche/química , Proteínas de Guisantes/química , Cinética
8.
J Dairy Sci ; 96(7): 4258-68, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23684041

RESUMEN

The dairy protein ß-lactoglobulin (BLG) is known to bind fatty acids such as the salt of the essential longchain fatty acid linoleic acid (cis,cis-9,12-octadecadienoic acid, n-6, 18:2). The aim of the current study was to investigate how bovine BLG-linoleate complexes, of various stoichiometry, affect the enzymatic digestion of BLG and the intracellular transport of linoleate into enterocyte-like monolayers. Duodenal and gastric digestions of the complexes indicated that BLG was hydrolyzed more rapidly when complexed with linoleate. Digested as well as undigested BLG-linoleate complexes reduced intracellular linoleate transport as compared with free linoleate. To investigate whether enteroendocrine cells perceive linoleate differently when part of a complex, the ability of linoleate to increase production or secretion of the enteroendocrine satiety hormone, cholecystokinin, was measured. Cholecystokinin mRNA levels were different when linoleate was presented to the cells alone or as part of a protein complex. In conclusion, understanding interactions between linoleate and BLG could help to formulate foods with targeted fatty acid bioaccessibility and, therefore, aid in the development of food matrices with optimal bioactive efficacy.


Asunto(s)
Digestión , Ácidos Grasos/farmacocinética , Lactoglobulinas/fisiología , Ácido Linoleico/farmacocinética , Leche/química , Animales , Transporte Biológico , Células CACO-2/metabolismo , Bovinos , Colecistoquinina/genética , Colecistoquinina/metabolismo , Células Epiteliales/metabolismo , Humanos , Técnicas In Vitro , Ácido Linoleico/metabolismo , ARN Mensajero/análisis
9.
Foods ; 12(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36900563

RESUMEN

Heteroprotein complex coacervation is an assembly formed by oppositely charged proteins in aqueous solution that leads to liquid-liquid phase separation. The ability of lactoferrin and ß-lactoglobulin to form complex coacervates at pH 5.5 under optimal protein stoichiometry has been studied in a previous work. The goal of the current study is to determine the influence of ionic strength on the complex coacervation between these two proteins using direct mixing and desalting protocols. The initial interaction between lactoferrin and ß-lactoglobulin and subsequent coacervation process were highly sensitive to the ionic strength. No microscopic phase separation was observed beyond a salt concentration of 20 mM. The coacervate yield decreased drastically with increasing added NaCl from 0 to 60 mM. The charge-screening effect induced by increasing the ionic strength is attributed to a decrease of interaction between the two oppositely charged proteins throughout a decrease in Debye length. Interestingly, as shown by isothermal titration calorimetry, a small concentration of NaCl around 2.5 mM promoted the binding energy between the two proteins. These results shed new light on the electrostatically driven mechanism governing the complex coacervation in heteroprotein systems.

10.
Food Res Int ; 167: 112678, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087210

RESUMEN

In this study, the capacity of eight essential oils (EOs), sage (Salvia officinalis), coriander (Coriandrum sativum), rosemary (Rosmarinus officinalis), black cumin (Nigella sativa), prickly juniper (Juniperus oxycedrus), geranium (Pelargonium graveolens), oregano (Origanum vulgare) and wormwood (Artemisia herba-alba), on the inhibition of NF-κB activation was screened at concentrations up to 0.25 µL/mL using THP-1 human macrophages bearing a NF-κB reporter. This screening selected coriander, geranium, and wormwood EOs as the most active, which later evidenced the ability to decrease over 50 % IL-6, IL-1ß, TNF-α and COX-2 mRNA expression in LPS-stimulated THP-1 macrophages. The chemical composition of selected EOs was performed by gas chromatography-mass spectrometry (GC-MS). The two major constituents (>50 % of each EO) were tested at the same concentrations presented in each EO. It was demonstrated that the major compound or the binary mixtures of the two major compounds could explain the anti-inflammatory effects reported for the crude EOs. Additionally, the selected EOs also inhibit>50 % caspase-1 activity. However, this effect could not be attributed to the major components (except for ß-citronellol/geranium oil, 40 %/65 % caspase-1 inhibition), suggesting, in addition to potential synergistic effects, the presence of minor compounds with caspase-1 inhibitory activity. These results demonstrated the potential use of the EOs obtained from Tunisian flora as valuable sources of anti-inflammatory agents providing beneficial health effects by reducing the levels of inflammatory mediators involved in the genesis of several diseases.


Asunto(s)
Aceites Volátiles , Origanum , Plantas Medicinales , Humanos , Aceites Volátiles/química , FN-kappa B , Macrófagos , Origanum/química , Antiinflamatorios/farmacología , Caspasas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda