Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Can J Infect Dis Med Microbiol ; 2023: 7274309, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36698730

RESUMEN

Background: Salmonella species are frequently linked to biofilm-associated infections. Biofilm formation intensively reduces the efficacy of antibiotics and the host immune system. Therefore, new therapeutic strategies are needed. Thymol, the main monoterpene phenol found in Thymus vulgaris, has been shown to possess potent antibiofilm activity. Our previous findings showed that thymol enhanced the antibiofilm activity of aminoglycosides against Salmonella enterica serovars. However, the clinical potential of thymol has not yet been realized due to its low aqueous solubility and high volatility. Nano-based drug delivery systems have emerged as a novel strategy to resolve these problems. This study aimed to investigate the antibiofilm activity of thymol-loaded poly (lactic-co-glycolic acid) nanoparticles (TH-NPs) and their synergism when used in combination with amikacin antibiotics. Methods: The antibacterial activity of TH-NPs was evaluated using the broth microdilution method. Biofilm formation and antibiofilm assays were performed by the miniaturized microtiter plate method. Interaction studies between TH-NPs and amikacin against biofilm were determined using the checkerboard method. Results: TH-NPs exhibited antibacterial activity against planktonic cells of S. enterica serovars that were more efficient (8 to 32 times) than free thymol alone. S. Typhimurium and S. Choleraesuis isolates were considered strong biofilm producers. The combination of TH-NPs with amikacin showed synergistic activity in the inhibition and eradication of S. enterica serovar biofilm. The minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC) of amikacin were reduced by 32 to 128-fold when used in combination with TH-NPs. Time-kill kinetic studies showed that the combination of TH-NPs with amikacin possesses bactericidal action. Conclusion: This study suggests that the combination of TH-NPs with amikacin can be an alternative to overcome biofilm-associatedSalmonella diseases and therefore should be further explored as a model to search for new antibiofilm drugs.

2.
AAPS PharmSciTech ; 22(1): 36, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33404935

RESUMEN

It has been shown that long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) could act synergistically with 5-fluorouracil (5-FU) to kill cancer cells. To facilitate their simultaneous transport in the bloodstream, we synthesized, for the first time, liposomes (LIPUFU) containing 5-FU in the aqueous core and docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) at a ratio of 1:2 in the lipid bilayer. LIPUFU werestable with uniform size of 154 ± 4 nm, PDI of 0.19 ± 0.03 and zeta potential of -41 ± 2 mV. They contained 557 ± 210 µmol/l DHA, 1467 ± 362 µmol/l EPA, and 9.8 ± 1.1 µmol/l 5-FU. Control liposomes without (LIP) or with only 5-FU (LIFU) or n-3 PUFAs (LIPU) were produced in a similar way. The effects of these different liposomal formulations on the cell cycle, growth, and apoptosis were evaluated in two human colorectal cancer (CRC) cell lines differing in sensitivity to 5-FU, using fluorescence-activated cell sorting analyses. LIPUFU were more cytotoxic than LIP, LIFU, and LIPU in both LS174T (p53+/+, bax-/-) and HT-29 (p53-/0, bax+/+) cell lines. Similar to LIFU, LIPUFU increased the percentage of cells in S phase, apoptosis, and/or necrosis. The cytotoxic potential of LIPUFU was confirmed in vivo by tumor growth inhibition in the chicken chorioallantoic membrane model. These results suggest that LIPUFU could be considered to facilitate the simultaneous transport of 5-FU and n-3 PUFAs to the tumor site, in particular in case of CRC liver metastases.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Ácidos Grasos Omega-3/análisis , Fluorouracilo/farmacología , Liposomas/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias del Colon/patología , Neoplasias Colorrectales/metabolismo , Humanos
3.
Artículo en Inglés | MEDLINE | ID: mdl-28674054

RESUMEN

Candida albicans is a major cause of fungal diseases in humans, and its resistance to available drugs is of concern. In an attempt to identify novel antifungal agents, we initiated a small-scale screening of a library of 199 natural plant compounds (i.e., natural products [NPs]). In vitro susceptibility profiling experiments identified 33 NPs with activity against C. albicans (MIC50s ≤ 32 µg/ml). Among the selected NPs, the sterol alkaloid tomatidine was further investigated. Tomatidine originates from the tomato (Solanum lycopersicum) and exhibited high levels of fungistatic activity against Candida species (MIC50s ≤ 1 µg/ml) but no cytotoxicity against mammalian cells. Genome-wide transcriptional analysis of tomatidine-treated C. albicans cells revealed a major alteration (upregulation) in the expression of ergosterol genes, suggesting that the ergosterol pathway is targeted by this NP. Consistent with this transcriptional response, analysis of the sterol content of tomatidine-treated cells showed not only inhibition of Erg6 (C-24 sterol methyltransferase) activity but also of Erg4 (C-24 sterol reductase) activity. A forward genetic approach in Saccharomyces cerevisiae coupled with whole-genome sequencing identified 2 nonsynonymous mutations in ERG6 (amino acids D249G and G132D) responsible for tomatidine resistance. Our results therefore unambiguously identified Erg6, a C-24 sterol methyltransferase absent in mammals, to be the main direct target of tomatidine. We tested the in vivo efficacy of tomatidine in a mouse model of C. albicans systemic infection. Treatment with a nanocrystal pharmacological formulation successfully decreased the fungal burden in infected kidneys compared to the fungal burden achieved by the use of placebo and thus confirmed the potential of tomatidine as a therapeutic agent.


Asunto(s)
Antifúngicos/farmacología , Productos Biológicos/farmacología , Candida albicans/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Línea Celular Tumoral , Farmacorresistencia Fúngica/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Ergosterol/farmacología , Femenino , Fluconazol/farmacología , Genes Fúngicos/genética , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana/métodos , Saccharomyces cerevisiae/genética , Tomatina/análogos & derivados , Tomatina/farmacología
4.
Artículo en Inglés | MEDLINE | ID: mdl-35911151

RESUMEN

Background: Thymol is an important component of essential oils found in the oil of thyme, is extracted mainly from Thymus vulgaris, and was shown to act synergistically with streptomycin against Klebsiella pneumoniae biofilms. Additionally, thymol could be encapsulated into poly (lactic-co-glycolic acid) (PLGA) nanoparticles to overcome issues related to its low water solubility and high volatility. The present study aimed to investigate the antibiofilm activity of thymol-loaded PLGA nanoparticles (Thy-NPs) alone and in combination with streptomycin against biofilms of K. pneumoniae isolates. Methods: The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The antibiofilm activities were determined by the safranin dye assay. The synergistic effect of Thy-NPs with streptomycin was assessed by the checkerboard method. The kinetic study of the biofilm biomass and time-kill assay were further performed. Results: Thy-NPs exhibited the highest antibacterial activity against K. pneumoniae isolates, with MIC values ranging from 1 to 8 µg/mL. Additionally, Thy-NPs showed the highest antibiofilm activity against K. pneumoniae isolates with minimal biofilm inhibitory concentration (MBIC) and minimal biofilm eradication concentration (MBEC) values ranging from 16 to 64 µg/mL and from 32 to 128 µg/Ml, respectively. The combination treatment combining Thy-NPs with streptomycin showed a synergistic effect against the inhibition of biofilm formation and eradication of biofilms of K. pneumoniae isolates with fractional inhibitory concentration index values ranging from 0.13 to 0.28. In addition, the MBIC and MBEC values of streptomycin against K. pneumoniae isolates were dramatically reduced (up to 128-fold) in combination with Thy-NPs, suggesting that Thy-NPs would enhance the antibiofilm activity of streptomycin. The biomass and time-kill kinetics analysis confirmed the observed synergistic interactions and showed the bactericidal activity of streptomycin in combination with Thy-NPs. Conclusions: Our results indicate that the synergistic bactericidal effect between streptomycin and Thy-NPs could be a promising approach in the control of biofilm-associated infections caused by K. pneumoniae.

5.
ACS Chem Neurosci ; 12(10): 1791-1801, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33926190

RESUMEN

The resin of the tree Boswellia sacra Flueck. (synonym: B. carterii; Burseraceae), also known as "frankincense", is a traditional remedy used for central nervous system disorders in East Africa. Here we report the evaluation of its antiseizure activity in zebrafish and mouse epilepsy models to identify novel antiseizure compounds. The resin was extracted by solvents of increasing polarity. The hexane extract demonstrated the strongest antiseizure activity and was therefore subjected to bioactivity-guided isolation, which leaded to the isolation of eight terpene derivatives. A new prenylbicyclogermacrene derivative (2) was isolated along with seven other compounds (1, 3-8). Among them, the triterpene ß-boswellic acid (5) showed the strongest activity and reduced 90% of pentylenetetrazole (PTZ)-induced seizures at 100 µg/mL. In parallel to B. sacra, a commercial extract of Boswellia serrata was also evaluated and showed moderate bioactivity (45% reduction at 30 µg/mL). The extract of B. serrata was subjected to targeted isolation of other boswellic acid derivatives (9-13), which were evaluated for antiseizure activity in comparison with 5. In the whole series, ß-boswellic acid (5) was the most active (60% reduction at 200 µM), and its potency was also confirmed with its purchased standard (S5). Pure nanoparticles of S5 and a commercially formulated extract of B. serrata were tested in a PTZ-kindling mouse seizure model. This notably revealed that the S5 administration reduced seizures by 50% in this mouse model, which was consistent with its detection and quantification in plasma and brain samples. This study and the preclinical evaluation performed indicate that ß-boswellic acid, common to various species of Boswellia, has some potential as an antiseizure agent.


Asunto(s)
Boswellia , Epilepsia , Triterpenos , Animales , Anticonvulsivantes/farmacología , Epilepsia/tratamiento farmacológico , Ratones , Extractos Vegetales/farmacología , Resinas de Plantas , Triterpenos/farmacología , Pez Cebra
6.
J Vasc Interv Radiol ; 21(7): 1084-90, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20610183

RESUMEN

PURPOSE: To characterize in vitro the loadability, physical properties, and release of irinotecan and doxorubicin from two commercially available embolization microspheres. MATERIALS AND METHODS: DC Bead (500-700 microm) and Hepasphere (400-600 microm) microspheres were loaded with either doxorubicin or irinotecan solutions. Drug amount was quantified with spectrophotometry, bead elasticity was measured under compression, and bead size and loading homogeneity were assessed with microscopy image analysis. Drug release was measured over 1-week periods in saline by using a pharmacopeia flow-through method. RESULTS: Almost complete drug loading was obtained for both microsphere types and drugs. Doxorubicin-loaded DC Beads maintained their spherical shape throughout the release. In contrast, Hepaspheres showed less homogeneous doxorubicin loading and, after release, some fractured microspheres. Incomplete doxorubicin release was observed in saline over 1 week (27% +/- 2 for DC beads and 18% +/- 7 for Hepaspheres; P = .013). About 75% of this amount was released within 2.2 hours for both beads. For irinotecan, complete release was obtained for both types of beads, in a sustained manner over 2-3 hours for DC Beads, and in a significantly faster manner as a 7-minute burst for Hepaspheres. CONCLUSIONS: The two drug-eluting microspheres could be efficiently loaded with both drugs. Incomplete doxorubicin release was attributed to strong drug-bead ionic interactions. Weaker interactions were observed with irinotecan, which led to faster drug release.


Asunto(s)
Camptotecina/análogos & derivados , Cápsulas/química , Preparaciones de Acción Retardada/química , Doxorrubicina/química , Embolización Terapéutica , Absorción , Antibióticos Antineoplásicos/química , Antineoplásicos Fitogénicos/química , Camptotecina/química , Difusión , Combinación de Medicamentos , Composición de Medicamentos/métodos , Dureza , Irinotecán
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda