Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Neurogenetics ; 22(1): 43-51, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33415589

RESUMEN

Pathogenic variants in L1CAM, the gene encoding the L1 cell adhesion molecule, are responsible for a wide clinical spectrum including X-linked hydrocephalus with stenosis of the Sylvius aqueduct, MASA syndrome (mental retardation, aphasia, shuffling gait, adducted thumbs), and a form of spastic paraplegia (SPG1). A moderate phenotype with mild intellectual disability (ID) and X-linked partial corpus callosum agenesis (CCA) has only been related to L1CAM in one family. We report here a second family, including 5 patients with mild to moderate ID and partial CCA without signs usually associated with L1CAM pathogenic variations (such as hydrocephalus, pyramidal syndrome, thumb adductus, aphasia). We identified a previously unreported c.3226A > C transversion leading to a p.Thr1076Pro amino acid substitution in the fifth fibronectin type III domain (FnIII) of the protein which co-segregates with the phenotype within the family. We performed in vitro assays to assess the pathogenic status of this variation. First, the expression of the novel p.Thr1076Pro mutant in COS7 cells resulted in endoplasmic reticulum (ER) retention and reduced L1CAM cell surface expression, which is expected to affect both L1CAM-mediated cell-cell adhesion and neurite growth. Second, immunoblotting techniques showed that the immature form of the L1CAM protein was increased, indicating that this variation led to a lack of maturation of the protein. ID associated with CCA is not a common clinical presentation of L1CAM pathogenic variants. Genome-wide analyses will identify such variations and it is important to acknowledge this atypical phenotype.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Acueducto del Mesencéfalo/anomalías , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Hidrocefalia/genética , Discapacidad Intelectual/genética , Mutación/genética , Molécula L1 de Adhesión de Célula Nerviosa/genética , Agenesia del Cuerpo Calloso/diagnóstico , Femenino , Eliminación de Gen , Estudio de Asociación del Genoma Completo , Humanos , Discapacidad Intelectual/diagnóstico , Linaje , Adulto Joven
2.
Genet Med ; 23(11): 2160-2170, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34234304

RESUMEN

PURPOSE: Diagnosis of inherited ataxia and related diseases represents a real challenge given the tremendous heterogeneity and clinical overlap of the various causes. We evaluated the efficacy of molecular diagnosis of these diseases by sequencing a large cohort of undiagnosed families. METHODS: We analyzed 366 unrelated consecutive patients with undiagnosed ataxia or related disorders by clinical exome-capture sequencing. In silico analysis was performed with an in-house pipeline that combines variant ranking and copy-number variant (CNV) searches. Variants were interpreted according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. RESULTS: We established the molecular diagnosis in 46% of the cases. We identified 35 mildly affected patients with causative variants in genes that are classically associated with severe presentations. These cases were explained by the occurrence of hypomorphic variants, but also rarely suspected mechanisms such as C-terminal truncations and translation reinitiation. CONCLUSION: A significant fraction of the clinical heterogeneity and phenotypic overlap is explained by hypomorphic variants that are difficult to identify and not readily predicted. The hypomorphic C-terminal truncation and translation reinitiation mechanisms that we identified may only apply to few genes, as it relies on specific domain organization and alterations. We identified PEX10 and FASTKD2 as candidates for translation reinitiation accounting for mild disease presentation.


Asunto(s)
Ataxia Cerebelosa , Genómica , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Humanos , Peroxinas , Receptores Citoplasmáticos y Nucleares , Estados Unidos , Secuenciación del Exoma
3.
Int J Mol Sci ; 20(14)2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31330985

RESUMEN

Smith-Magenis syndrome (SMS), linked to Retinoic Acid Induced (RAI1) haploinsufficiency, is a unique model of the inversion of circadian melatonin secretion. In this regard, this model is a formidable approach to better understand circadian melatonin secretion cycle disorders and the role of the RAI1 gene in this cycle. Sleep-wake cycle disorders in SMS include sleep maintenance disorders with a phase advance and intense sleepiness around noon. These disorders have been linked to a general disturbance of sleep-wake rhythm and coexist with inverted secretion of melatonin. The exact mechanism underlying the inversion of circadian melatonin secretion in SMS has rarely been discussed. We suggest three hypotheses that could account for the inversion of circadian melatonin secretion and discuss them. First, inversion of the circadian melatonin secretion rhythm could be linked to alterations in light signal transduction. Second, this inversion could imply global misalignment of the circadian system. Third, the inversion is not linked to a global circadian clock shift but rather to a specific impairment in the melatonin secretion pathway between the suprachiasmatic nuclei (SCN) and pinealocytes. The development of diurnal SMS animal models that produce melatonin appears to be an indispensable step to further understand the molecular basis of the circadian melatonin secretion rhythm.


Asunto(s)
Susceptibilidad a Enfermedades , Melatonina/biosíntesis , Síndrome de Smith-Magenis/etiología , Síndrome de Smith-Magenis/metabolismo , Animales , Mapeo Cromosómico , Ritmo Circadiano , Predisposición Genética a la Enfermedad , Humanos , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Síndrome de Smith-Magenis/diagnóstico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda