RESUMEN
The syntheses of several alkaloids and nitrogen-containing compounds including N-Boc-coniine (14b), pyrrolizidine (1), δ-coniceine (2), and pyrrolo[1,2a]azepine (3) are described. New C-C bonds in the α position relative to the nitrogen atom were formed by the alkylation of metalated α-aminonitriles 4 and 6a-c with alkyl iodides possessing the requisite size and functionality. In all of the reported cases, the pyrrolidine ring was formed in the aqueous medium through a favorable 5-exo-tet process involving a primary or a secondary amino group and a terminal δ-leaving group. Conversely, the azepane ring was efficiently formed in N,N-dimethylformamide (DMF), as the preferred aprotic solvent, through an unreported 7-exo-tet cyclization process involving a more nucleophilic sodium amide and a terminal mesylate borne by a saturated six carbon chain unit. In this way, we successfully synthesized pyrrolo[1,2a]azepane 3 and 2-propyl-azepane 14c in good yields from inexpensive and readily available materials without tedious separation methods.
RESUMEN
Identified in 1973, somatostatin (SST) is a cyclic hormone peptide with a short biological half-life. Somatostatin receptors (SSTRs) are widely expressed in the whole body, with five subtypes described. The interaction between SST and its receptors leads to the internalization of the ligand-receptor complex and triggers different cellular signaling pathways. Interestingly, the expression of SSTRs is significantly enhanced in many solid tumors, especially gastro-entero-pancreatic neuroendocrine tumors (GEP-NET). Thus, somatostatin analogs (SSAs) have been developed to improve the stability of the endogenous ligand and so extend its half-life. Radiolabeled analogs have been developed with several radioelements such as indium-111, technetium-99 m, and recently gallium-68, fluorine-18, and copper-64, to visualize the distribution of receptor overexpression in tumors. Internal metabolic radiotherapy is also used as a therapeutic strategy (e.g., using yttrium-90, lutetium-177, and actinium-225). With some radiopharmaceuticals now used in clinical practice, somatostatin analogs developed for imaging and therapy are an example of the concept of personalized medicine with a theranostic approach. Here, we review the development of these analogs, from the well-established and authorized ones to the most recently developed radiotracers, which have better pharmacokinetic properties and demonstrate increased efficacy and safety, as well as the search for new clinical indications.
Asunto(s)
Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Radiofármacos/química , Somatostatina/análogos & derivados , Somatostatina/uso terapéutico , Secuencia de Aminoácidos , Animales , Humanos , Péptidos/química , Receptores de Somatostatina/metabolismo , Somatostatina/agonistas , Somatostatina/antagonistas & inhibidores , Distribución TisularRESUMEN
PURPOSE: This study sought to provide preliminary results on the biodistribution and dosimetry following intra-arterial liver injection of 188Re-SSS Lipiodol on hepatocellular carcinoma patients included in the Phase I Lip-Re 1 study. METHODS: Results of the first six patients included are reported. Analysis of the 188Re-SSS Lipiodol biodistribution was based on planar scintigraphic and tomoscintigraphic (SPECT) studies performed at 1, 6, 24, 48, and 72 h post-administration. Quantification in blood, urine, and stool samples was performed. Determination of the tumour to non-tumour uptake ratio (T/NT) was calculated. Absorbed doses to target organs and tumours were evaluated using the MIRD formalism. RESULTS: The mean injected activity of 188Re-SSS Lipiodol was 1645 ± 361 MBq. Uptakes were seen in the liver (tumour and healthy liver) and the lungs only. All these uptakes were stable over time. A mean 1.4 ± 0.7% of 188Re-SSS Lipiodol administered was detected in serum samples at 6 h, declining rapidly thereafter. On average, 1.5 ± 1.6% of administered activity was eliminated in urine and feces over 72 h. Overall, 90.7 ± 1.6% of detected activity on SPECT studies was found in the liver (74.9 ± 1.8% in tumours and 19.1 ± 1.7% in the healthy liver) and 9.3 ± 1.6% in the lungs (5.7 ± 1.1% in right and 3.7 ± 0.5% in left lungs). Mean doses absorbed were 7.9 ± 3.7Gy to the whole liver, 42.7 ± 34.0Gy to the tumours, 10.2 ± 3.7Gy to the healthy liver, and 1.5 ± 1.2Gy to the lungs. Four patients had stable disease on CT scans at 2 months. The first patient with rapidly progressive disease died at 1 month, most probably of massive tumour progression. Due to this early death and using a conservative approach, the trial independent evaluation committee decided to consider this event as a treatment-related toxicity. CONCLUSION: 188Re-SSS Lipiodol has a favorable biodistribution profile concerning radioembolization, with the highest in-vivo stability among all radiolabeled Lipiodol compounds reported to date. These preliminary results must be further confirmed while completing this Phase I Lip Re1 study.
Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/terapia , Embolización Terapéutica/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Hígado/diagnóstico por imagen , Anciano , Progresión de la Enfermedad , Combinación de Medicamentos , Femenino , Humanos , Inyecciones Intraarteriales , Aceite Yodado , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Compuestos Organometálicos , Estudios Prospectivos , Radiometría , Radiofármacos/uso terapéutico , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos XRESUMEN
BACKGROUND: Despite the wide development of 90Y-loaded microspheres, 188Re-labeled lipiodol is still being used for radioembolization of hepatocellular carcinoma (HCC). However, the use of this latter compound is limited by in vivo instability. This study sought to evaluate the safety, bio-distribution, and response to 188Re-SSS lipiodol, a new and more stable compound. METHOD: Lip-Re-01 was an activity-escalation Phase 1 study involving HCC patients progressing after sorafenib. The primary endpoint was safety based on Common Terminology Criteria for Adverse Events (AEs) of Grade ≥3 within 2 months. Secondary endpoints included bio-distribution assessed by scintigraphy quantification from 1 to 72 h, tumor to non-tumor uptake ratio (T/NT), as well as blood, urine and feces collection over 72 h, dosimetry, and response evaluation (mRECIST). RESULTS: Overall, 14 heavily pre-treated HCC patients were treated using a whole liver approach. The mean injected activity was 1.5 ± 0.4 GBq for activity Level 1 (n = 6), 3.6 ± 0.3 GBq for Level 2 (n = 6), and 5.0 ± 0.4 GBq for Level 3 (n = 2). Safety was acceptable with only 1/6 of Level 1 and 1/6 of Level 2 patients experiencing limiting toxicity (one liver failure; one lung disease). The study was prematurely discontinued unrelated to clinical outcomes. Uptake occurred in the tumor, liver, and lungs, and only sometimes in the bladder. The T/NT ratio was high with a mean of 24.9 ± 23.4. Cumulative urinary elimination and fecal eliminations at 72 h were very low, 4.8 ± 3.2% and 0.7 ± 0.8%, respectively. Partial response occurred in 21% of patients (0% in the first activity level; 37.5% in the others). CONCLUSION: The high in vivo stability of 188Re-SSS lipiodol was confirmed, resulting in encouraging responses for a Phase 1 study. As the 3.6 GBq activity proved to be safe, it will be used in a future Phase 2 study.
RESUMEN
Rhenium-188 (188Re) is a high energy beta-emitting radioisotope with a short 16.9 h physical half-life, which has been shown to be a very attractive candidate for use in therapeutic nuclear medicine. The high beta emission has an average energy of 784 keV and a maximum energy of 2.12 MeV, sufficient to penetrate and destroy targeted abnormal tissues. In addition, the low-abundant gamma emission of 155 keV (15%) is efficient for imaging and for dosimetric calculations. These key characteristics identify 188Re as an important therapeutic radioisotope for routine clinical use. Moreover, the highly reproducible on-demand availability of 188Re from the 188W/188Re generator system is an important feature and permits installation in hospital-based or central radiopharmacies for cost-effective availability of no-carrier-added (NCA) 188Re. Rhenium-188 and technetium-99 m exhibit similar chemical properties and represent a "theranostic pair." Thus, preparation and targeting of 188Re agents for therapy is similar to imaging agents prepared with 99mTc, the most commonly used diagnostic radionuclide. Over the last three decades, radiopharmaceuticals based on 188Re-labeled small molecules, including peptides, antibodies, Lipiodol and particulates have been reported. The successful application of these 188Re-labeled therapeutic radiopharmaceuticals has been reported in multiple early phase clinical trials for the management of various primary tumors, bone metastasis, rheumatoid arthritis, and endocoronary interventions. This article reviews the use of 188Re-radiopharmaceuticals which have been investigated in patients for cancer treatment, demonstrating that 188Re represents a cost effective alternative for routine clinical use in comparison to more expensive and/or less readily available therapeutic radioisotopes.