Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Br J Cancer ; 129(5): 884-894, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37474721

RESUMEN

BACKGROUND: It is imperative to develop novel therapeutics to overcome chemoresistance, a significant obstacle in the clinical management of prostate cancer (PCa) and other cancers. METHODS: A phenotypic screen was performed to identify novel inhibitors of chemoresistant PCa cells. The mechanism of action of potential candidate(s) was investigated using in silico docking, and molecular and cellular assays in chemoresistant PCa cells. The in vivo efficacy was evaluated in mouse xenograft models of chemoresistant PCa. RESULTS: Nicardipine exhibited high selectivity and potency against chemoresistant PCa cells via inducing apoptosis and cell cycle arrest. Computational, molecular, and cellular studies identified nicardipine as a putative inhibitor of embryonic ectoderm development (EED) protein, and the results are consistent with a proposed mechanism of action that nicardipine destabilised enhancer of zeste homologue 2 (EZH2) and inhibited key components of noncanonical EZH2 signalling, including transducer and activator of transcription 3, S-phase kinase-associated protein 2, ATP binding cassette B1, and survivin. As a monotherapy, nicardipine effectively inhibited the skeletal growth of chemoresistant C4-2B-TaxR tumours. As a combination regimen, nicardipine synergistically enhanced the in vivo efficacy of docetaxel against C4-2 xenografts. CONCLUSION: Our findings provided the first preclinical evidence supporting nicardipine as a novel EED inhibitor that has the potential to be promptly tested in PCa patients to overcome chemoresistance and improve clinical outcomes.


Asunto(s)
Nicardipino , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Apoptosis , Línea Celular Tumoral , Docetaxel/farmacología , Docetaxel/uso terapéutico , Nicardipino/farmacología , Nicardipino/uso terapéutico , Complejo Represivo Polycomb 2 , Neoplasias de la Próstata/tratamiento farmacológico
2.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234468

RESUMEN

Peroxidasin (PXDN), a human homolog of Drosophila PXDN, belongs to the family of heme peroxidases and has been found to promote oxidative stress in cardiovascular tissue, however, its role in prostate cancer has not been previously elucidated. We hypothesized that PXDN promotes prostate cancer progression via regulation of metabolic and oxidative stress pathways. We analyzed PXDN expression in prostate tissue by immunohistochemistry and found increased PXDN expression with prostate cancer progression as compared to normal tissue or cells. PXDN knockdown followed by proteomic analysis revealed an increase in oxidative stress, mitochondrial dysfunction and gluconeogenesis pathways. Additionally, Liquid Chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomics confirmed that PXDN knockdown induced global reprogramming associated with increased oxidative stress and decreased nucleotide biosynthesis. We further demonstrated that PXDN knockdown led to an increase in reactive oxygen species (ROS) associated with decreased cell viability and increased apoptosis. Finally, PXDN knockdown decreased colony formation on soft agar. Overall, the data suggest that PXDN promotes progression of prostate cancer by regulating the metabolome, more specifically, by inhibiting oxidative stress leading to decreased apoptosis. Therefore, PXDN may be a biomarker associated with prostate cancer and a potential therapeutic target.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Estrés Oxidativo , Peroxidasa/metabolismo , Neoplasias de la Próstata/metabolismo , Apoptosis , Línea Celular Tumoral , Gluconeogénesis , Humanos , Masculino , Metabolómica , Neoplasias de la Próstata/patología , Proteómica , Peroxidasina
3.
Bioorg Med Chem Lett ; 28(3): 523-528, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29329659

RESUMEN

Inspired by a rhodanine-based dual inhibitor of Bcl-xL and Mcl-1, a focused library of analogues was prepared wherein the rhodanine core was replaced with a less promiscuous thiazolidine-2,4-dione scaffold. Compounds were initially evaluated for their abilities to inhibit Mcl-1. The most potent compound 12b inhibited Mcl-1 with a Ki of 155 nM. Further investigation revealed comparable inhibition of Bcl-xL (Ki = 90 nM), indicating that the dual inhibitory profile of the initial rhodanine lead had been retained upon switching the heterocycle core.


Asunto(s)
Descubrimiento de Drogas , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Tiazolidinedionas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Relación Estructura-Actividad , Tiazolidinedionas/síntesis química , Tiazolidinedionas/química
4.
BMC Immunol ; 18(1): 27, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28525970

RESUMEN

BACKGROUND: We have previously reported that interleukin-10 (IL-10) deficient dendritic cells (DCs) are potent antigen presenting cells that induced elevated protective immunity against Chlamydia. To further investigate the molecular and biochemical mechanism underlying the superior immunostimulatory property of IL-10 deficient DCs we performed proteomic analysis on protein profiles from Chlamydia-pulsed wild-type (WT) and IL-10-/- DCs to identify differentially expressed proteins with immunomodulatory properties. RESULTS: The results showed that alpha enolase (ENO1), a metabolic enzyme involved in the last step of glycolysis was significantly upregulated in Chlamydia-pulsed IL-10-/- DCs compared to WT DCs. We further studied the immunoregulatory role of ENO1 in DC function by generating ENO1 knockdown DCs, using lentiviral siRNA technology. We analyzed the effect of the ENO1 knockdown on DC functions after pulsing with Chlamydia. Pyruvate assay, transmission electron microscopy, flow cytometry, confocal microscopy, cytokine, T-cell activation and adoptive transfer assays were also used to study DC function. The results showed that ENO1 knockdown DCs had impaired maturation and activation, with significant decrease in intracellular pyruvate concentration as compared with the Chlamydia-pulsed WT DCs. Adoptive transfer of Chlamydia-pulsed ENO1 knockdown DCs were poorly immunogenic in vitro and in vivo, especially the ability to induce protective immunity against genital chlamydia infection. The marked remodeling of the mitochondrial morphology of Chlamydia-pulsed ENO1 knockdown DCs compared to the Chlamydia-pulsed WT DCs was associated with the dysregulation of translocase of the outer membrane (TOM) 20 and adenine nucleotide translocator (ANT) 1/2/3/4 that regulate mitochondrial permeability. The results suggest that an enhanced glycolysis is required for efficient antigen processing and presentation by DCs to induce a robust immune response. CONCLUSIONS: The upregulation of ENO1 contributes to the superior immunostimulatory function of IL-10 deficient DCs. Our studies indicated that ENO1 deficiency causes the reduced production of pyruvate, which then contributes to a dysfunction in mitochondrial homeostasis that may affect DC survival, maturation and antigen presenting properties. Modulation of ENO1 thus provides a potentially effective strategy to boost DC function and promote immunity against infectious and non-infectious diseases.


Asunto(s)
Biomarcadores de Tumor/genética , Infecciones por Chlamydia/inmunología , Chlamydia trachomatis/inmunología , Proteínas de Unión al ADN/genética , Células Dendríticas/fisiología , Genitales/inmunología , Fosfopiruvato Hidratasa/genética , Proteínas Supresoras de Tumor/genética , Animales , Presentación de Antígeno , Biomarcadores de Tumor/metabolismo , Permeabilidad de la Membrana Celular , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Células Dendríticas/microbiología , Femenino , Genitales/microbiología , Inmunidad Innata , Interleucina-10/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Proteómica , Ácido Pirúvico/metabolismo , ARN Interferente Pequeño/genética , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba
5.
Mol Cancer ; 15: 25, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26988096

RESUMEN

BACKGROUND: GLI pathogenesis-related 1 (GLIPR1) was originally identified in glioblastomas and its expression was also found to be down-regulated in prostate cancer. Functional studies revealed both growth suppression and proapoptotic activities for GLIPR1 in multiple cancer cell lines. GLIPR1's role in lung cancer has not been investigated. Protein arginine methyltransferase 5 (PRMT5) is a protein arginine methyltransferase and forms a stoichiometric complex with the WD repeat domain 77 (WDR77) protein. Both PRMT5 and WDR77 are essential for growth of lung epithelial and cancer cells. But additional gene products that interact genetically or biochemichally with PRMT5 and WDR77 in the control of lung cancer cell growth are not characterized. METHODS: DNA microarray and immunostaining were used to detect GLIPR1 expression during lung development and lung tumorigenesis. GLIPR1 expression was also analyzed in the TCGA lung cancer cohort. The consequence of GLIPR1 on growth of lung cancer cells in the tissue culture and lung tumor xenografts in the nude mice was observed. RESULTS: We found that GLIPR1 expression is negatively associated with PRMT5/WDR77. GLIPR1 is absent in growing epithelial cells at the early stages of mouse lung development and highly expressed in the adult lung. Expression of GLIPR1 was down-regulated during lung tumorigenesis and its expression suppressed growth of lung cancer cells in the tissue culture and lung tumor xenografts in mice. GLIPR1 regulates lung cancer growth through the V-Erb-B avian erythroblastic leukemia viral oncogene homolog 3 (ErbB3). CONCLUSIONS: This study reveals a novel pathway that PRMT5/WDR77 regulates GLIPR1 expression to control lung cancer cell growth and GLIPR1 as a potential therapeutic agent for lung cancer.


Asunto(s)
Genes Supresores de Tumor , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo/genética , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Pulmón/embriología , Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana , Ratones Desnudos , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba/genética , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Tumour Biol ; 37(8): 11147-11162, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26935058

RESUMEN

Patients with advanced epithelial ovarian cancer often experience disease recurrence after standard therapies, a critical factor in determining their five-year survival rate. Recent reports indicated that long-term or short-term survival is associated with varied gene expression of cancer cells. Thus, identification of novel prognostic biomarkers should be considered. Since the mouse genome is similar to the human genome, we explored potential prognostic biomarkers using two groups of mouse ovarian cancer cell lines (group 1: IG-10, IG-10pw, and IG-10pw/agar; group 2: IG-10 clones 2, 3, and 11) which display highly and moderately aggressive phenotypes in vivo. Mice injected with these cell lines have different survival time and rates, capacities of tumor, and ascites formations, reflecting different prognostic potentials. Using an Affymetrix Mouse Genome 430 2.0 Array, a total of 181 genes were differentially expressed (P < 0.01) by at least twofold between two groups of the cell lines. Of the 181 genes, 109 and 72 genes were overexpressed in highly and moderately aggressive cell lines, respectively. Analysis of the 109 and 72 genes using Ingenuity Pathway Analysis (IPA) tool revealed two cancer-related gene networks. One was associated with the highly aggressive cell lines and affiliated with MYC gene, and another was associated with the moderately aggressive cell lines and affiliated with the androgen receptor (AR). Finally, the gene enrichment analysis indicated that the overexpressed 89 genes (out of 109 genes) in highly aggressive cell lines had a function annotation in the David database. The cancer-relevant significant gene ontology (GO) terms included Cell cycle, DNA metabolic process, and Programmed cell death. None of the genes from a set of the 72 genes overexpressed in the moderately aggressive cell lines had a function annotation in the David database. Our results suggested that the overexpressed MYC and 109 gene set represented highly aggressive ovarian cancer potential biomarkers while overexpressed AR and 72 gene set represented moderately aggressive ovarian cancer potential biomarkers. Based on our knowledge, the current study is first time to report the potential biomarkers relevant to different aggressive ovarian cancer. These potential biomarkers provide important information for investigating human ovarian cancer prognosis.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Transcriptoma , Animales , Carcinoma Epitelial de Ovario , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Plant Cell ; 22(1): 48-61, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20081112

RESUMEN

Long terminal repeat (LTR) retrotransposons, the most abundant genomic components in flowering plants, are classifiable into autonomous and nonautonomous elements based on their structural completeness and transposition capacity. It has been proposed that selection is the major force for maintaining sequence (e.g., LTR) conservation between nonautonomous elements and their autonomous counterparts. Here, we report the structural, evolutionary, and expression characterization of a giant retrovirus-like soybean (Glycine max) LTR retrotransposon family, SNARE. This family contains two autonomous subfamilies, SARE(A) and SARE(B), that appear to have evolved independently since the soybean genome tetraploidization event approximately 13 million years ago, and a nonautonomous subfamily, SNRE, that originated from SARE(A). Unexpectedly, a subset of the SNRE elements, which amplified from a single founding SNRE element within the last approximately 3 million years, have been dramatically homogenized with either SARE(A) or SARE(B) primarily in the LTR regions and bifurcated into distinct subgroups corresponding to the two autonomous subfamilies. We uncovered evidence of region-specific swapping of nonautonomous elements with autonomous elements that primarily generated various nonautonomous recombinants with LTR sequences from autonomous elements of different evolutionary lineages, thus revealing a molecular mechanism for the enhancement of preexisting partnership and the establishment of new partnership between autonomous and nonautonomous elements.


Asunto(s)
Glycine max/genética , Retroelementos , Secuencias Repetidas Terminales , ADN de Plantas/genética , Evolución Molecular , Genoma de Planta , Familia de Multigenes , Filogenia , Recombinación Genética , Análisis de Secuencia de ADN
8.
Heliyon ; 9(4): e14810, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37113783

RESUMEN

Oxidative stress is increased in several cancers including prostate cancer, and is currently being exploited in cancer therapy to induce ferroptosis, a novel nonapoptotic form of cell death. High mobility group A2 (HMGA2), a non-histone protein up-regulated in several cancers, can be truncated due to chromosomal rearrangement or alternative splicing of HMGA2 gene. The purpose of this study is to investigate the role of wild-type vs. truncated HMGA2 in prostate cancer (PCa). We analyzed the expression of wild-type vs. truncated HMGA2 and showed that prostate cancer patient tissue and some cell lines expressed increasing amounts of both wild-type and truncated HMGA2 with increasing tumor grade, compared to normal epithelial cells. RNA-Seq analysis of LNCaP prostate cancer cells stably overexpressing wild-type HMGA2 (HMGA2-WT), truncated HMGA2 (HMGA2-TR) or empty vector (Neo) control revealed that HMGA2-TR cells exhibited higher oxidative stress compared to HMGA2-WT or Neo control cells, which was also confirmed by analysis of basal reactive oxygen species (ROS) levels using 2', 7'-dichlorofluorescin diacetate (DCFDA) dye, the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) and NADP/NADPH using metabolomics. This was associated with increased sensitivity to RAS-selective lethal 3 (RSL3)-induced ferroptosis that could be antagonized by ferrostatin-1. Additionally, proteomic and immunoprecipitation analyses showed that cytoplasmic HMGA2 protein interacted with Ras GTPase-activating protein-binding protein 1 (G3BP1), a cytoplasmic stress granule protein that responds to oxidative stress, and that G3BP1 transient knockdown increased sensitivity to ferroptosis even further. Endogenous knockdown of HMGA2 or G3BP1 in PC3 cells reduced proliferation which was reversed by ferrostatin-1. In conclusion, we show a novel role for HMGA2 in oxidative stress, particularly the truncated HMGA2, which may be a therapeutic target for ferroptosis-mediated prostate cancer therapy.

9.
Transl Oncol ; 34: 101707, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37271121

RESUMEN

Chemoresistance is a major obstacle in the clinical management of metastatic, castration-resistant prostate cancer (PCa). It is imperative to develop novel strategies to overcome chemoresistance and improve clinical outcomes in patients who have failed chemotherapy. Using a two-tier phenotypic screening platform, we identified bromocriptine mesylate as a potent and selective inhibitor of chemoresistant PCa cells. Bromocriptine effectively induced cell cycle arrest and activated apoptosis in chemoresistant PCa cells but not in chemoresponsive PCa cells. RNA-seq analyses revealed that bromocriptine affected a subset of genes implicated in the regulation of the cell cycle, DNA repair, and cell death. Interestingly, approximately one-third (50/157) of the differentially expressed genes affected by bromocriptine overlapped with known p53-p21- retinoblastoma protein (RB) target genes. At the protein level, bromocriptine increased the expression of dopamine D2 receptor (DRD2) and affected several classical and non-classical dopamine receptor signal pathways in chemoresistant PCa cells, including adenosine monophosphate-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa B  (NF-κB), enhancer of zeste homolog 2 (EZH2), and survivin. As a monotherapy, bromocriptine treatment at 15 mg/kg, three times per week, via the intraperitoneal route significantly inhibited the skeletal growth of chemoresistant C4-2B-TaxR xenografts in athymic nude mice. In summary, these results provided the first preclinical evidence that bromocriptine is a selective and effective inhibitor of chemoresistant PCa. Due to its favorable clinical safety profiles, bromocriptine could be rapidly tested in PCa patients and repurposed as a novel subtype-specific treatment to overcome chemoresistance.

10.
Mol Cell Biochem ; 363(1-2): 257-68, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22160925

RESUMEN

Increasing evidence supports the existence of a subpopulation of cancer cells capable of self-renewal and differentiation into diverse cell lineages. These cancer stem-like or cancer-initiating cells (CICs) also demonstrate resistance to chemo- and radiotherapy and may function as a primary source of cancer recurrence. We report here on the isolation and in vitro propagation of multicellular ovarian cancer spheroids from a well-established ovarian cancer cell line (OVCAR-3). The spheroid-derived cells (SDCs) display self-renewal potential, the ability to produce differentiated progeny, and increased expression of genes previously associated with CICs. SDCs also demonstrate higher invasiveness, migration potential, and enhanced resistance to standard anticancer agents relative to parental OVCAR-3 cells. Furthermore, SDCs display up-regulation of genes associated with epithelial-to-mesenchymal transition (EMT), anticancer drug resistance and/or decreased susceptibility to apoptosis, as well as, down-regulation of genes typically associated with the epithelial cell phenotype and pro-apoptotic genes. Pathway and biological process enrichment analyses indicate significant differences between the SDCs and precursor OVCAR-3 cells in TGF-beta-dependent induction of EMT, regulation of lipid metabolism, NOTCH and Hedgehog signaling. Collectively, our results indicate that these SDCs will be a useful model for the study of ovarian CICs and for the development of novel CIC-targeted therapies.


Asunto(s)
Separación Celular , Células Madre Neoplásicas/patología , Neoplasias Ováricas/patología , Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Separación Celular/métodos , Supervivencia Celular/efectos de los fármacos , Análisis por Conglomerados , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Invasividad Neoplásica , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Fenotipo , Transducción de Señal , Esferoides Celulares
11.
Int J Hyperthermia ; 28(4): 349-61, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22621736

RESUMEN

PURPOSE: Heterogeneous bioeffects have been reported in previous studies of ultrasound-mediated gene delivery. The goal of this study is to identify the differences between cells that take up plasmid DNA (pDNA) after sonication but are not transfected and cells that similarly take up pDNA but are transfected. We used these findings to select drugs that regulate intracellular processes expected to enhance gene transfection in combination with US. MATERIALS AND METHODS: Gene expression among DU145 human prostate cancer cells after ultrasound-mediated transfection was analyzed using Affymetrix GeneChip Human Genome U133 Plus 2.0 Arrays. Drug treatments suggested by the microarray analysis were combined with US exposure to regulate the corresponding intracellular processes. Cell viability and transfection efficiency were determined by flow cytometry to analyze the effects of US combined with drug treatment. RESULTS: Genes such as GADD45α (growth arrest and DNA-damage inducible, alpha) and Topoisomerase IIα were found to be associated with successful transfection. Drugs that regulate GADD45α and Topoisomerase IIα (e.g., ethyl methanesulfomate, amsacrine and chloroquine) were shown to increase ultrasound-mediated transfection efficiency by up to 2 fold. CONCLUSIONS: Among cells with pDNA uptake after sonication, we found that genes are differentially expressed among transfected cells versus non-transfected cells. Regulation of the expression level of GADD45α and TOP2α and other intracellular processes can yield higher efficiency of ultrasound-mediated gene transfection. This suggests that a strategy to increase gene transfection efficiency involving the combination of sonication and regulation of intracellular processes using drugs could further enhance US-mediated gene transfection.


Asunto(s)
ADN/genética , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Sonido , Transfección/métodos , Antígenos de Neoplasias/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/genética , Humanos , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Preparaciones Farmacéuticas/administración & dosificación , Plásmidos , Terapia por Ultrasonido
12.
RSC Med Chem ; 13(8): 963-969, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36092148

RESUMEN

Overexpression of the anti-apoptotic BCL-2 proteins is associated with the development and progression of a range of cancers. Venetoclax, an FDA-approved BCL-2 inhibitor, is fast becoming the standard-of-care for acute myeloid leukemia and chronic lymphocytic leukemia. However, the median survival offered by venetoclax is only 18 months (as part of a combination therapy regimen), and one of the primary culprits for this is the concomitant upregulation of sister anti-apoptotic proteins, in particular MCL-1 (and BCL-xL), which provides an escape route that manifests as venetoclax resistance. Since inhibition of BCL-xL leads to thrombocytopenia, we believe that a dual MCL-1/BCL-2 inhibitor may provide an enhanced therapeutic effect relative to a selective BCL-2 inhibitor. Beginning with a carboxylic acid-containing literature compound that is a potent inhibitor of MCL-1 and a moderate inhibitor of BCL-2, we herein describe our efforts to develop dual inhibitors of MCL-1 and BCL-2 by scaffold hopping from an indole core to an indazole framework. Subsequently, further elaboration of our novel N2-substituted, indazole-3-carboxylic acid lead into a family of indazole-3-acylsulfonamides resulted in improved inhibition of both MCL-1 and BCL-2, possibly through occupation of the p4 pocket, with minimal or no inhibition of BCL-xL.

13.
Oncoscience ; 8: 14-30, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33884281

RESUMEN

Inhibitor of differentiation 4 (Id4), a member of the helix-loop-helix family of transcriptional regulators has emerged as a tumor suppressor in prostate cancer. In this study we investigated the effect of loss of Id4 (Id4-/-) on mouse prostate development. Histological analysis was performed on prostates from 25 days, 3 months and 6 months old Id4-/- mice. Expression of Amacr, Ck8, Ck18, Fkbp51, Fkbp52, androgen receptor, Pten, sca-1 and Nkx3.1 was investigated by immunohistochemistry. Results were compared to the prostates from Nkx3.1-/- mice. Id4-/- mice had smaller prostates with fewer and smaller tubules. Subtle PIN like lesions were observed at 6mo. Decreased Nkx3.1 and Pten and increased stem cell marker sca-1, PIN marker Amacr and basal cell marker p63 was observed at all ages. Persistent Ck8 and Ck18 expression suggested that loss of Id4 results in epithelial commitment but not terminal differentiation in spite of active Ar. Loss of Id4 attenuates normal prostate development and promotes hyperplasia/ dysplasia with PIN like lesions. The results suggest that loss of Id4 maintains stem cell phenotype of "luminal committed basal cells", identifying a unique prostate developmental pathway regulated by Id4.

14.
Mol Cancer ; 9: 186, 2010 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-20624317

RESUMEN

BACKGROUND: Sulfatides (ST) are a category of sulfated galactosylceramides (GalCer) that are elevated in many types of cancer including, possibly, ovarian cancer. Previous evidence for elevation of ST in ovarian cancer was based on a colorimetric reagent that does not provide structural details and can also react with other lipids. Therefore, this study utilized mass spectrometry for a structure-specific and quantitative analysis of the types, amounts, and tissue localization of ST in ovarian cancer, and combined these findings with analysis of mRNAs for the relevant enzymes of ST metabolism to explore possible mechanisms. RESULTS: Analysis of 12 ovarian tissues graded as histologically normal or having epithelial ovarian tumors by liquid chromatography electrospray ionization-tandem mass spectrometry (LC ESI-MS/MS) established that most tumor-bearing tissues have higher amounts of ST. Because ovarian cancer tissues are comprised of many different cell types, histological tissue slices were analyzed by matrix-assisted laser desorption ionization-tissue-imaging MS (MALDI-TIMS). The regions where ST were detected by MALDI-TIMS overlapped with the ovarian epithelial carcinoma as identified by H & E staining and histological scoring. Furthermore, the structures for the most prevalent species observed via MALDI-TIMS (d18:1/C16:0-, d18:1/C24:1- and d18:1/C24:0-ST) were confirmed by MALDI-TIMS/MS, whereas, a neighboring ion(m/z 885.6) that was not tumor specific was identified as a phosphatidylinositol. Microarray analysis of mRNAs collected using laser capture microdissection revealed that expression of GalCer synthase and Gal3ST1 (3'-phosphoadenosine-5'-phosphosulfate:GalCer sulfotransferase) were approximately 11- and 3.5-fold higher, respectively, in the ovarian epithelial carcinoma cells versus normal ovarian stromal tissue, and they were 5- and 2.3-fold higher in comparison with normal surface ovarian epithelial cells, which is a likely explanation for the higher ST. CONCLUSIONS: This study combined transcriptomic and lipidomic approaches to establish that sulfatides are elevated in ovarian cancer and should be evaluated further as factors that might be important in ovarian cancer biology and, possibly, as biomarkers.


Asunto(s)
Perfilación de la Expresión Génica , Lípidos , Espectrometría de Masas/métodos , Neoplasias Ováricas/metabolismo , Sulfoglicoesfingolípidos/metabolismo , Femenino , Humanos
15.
PLoS One ; 14(4): e0214844, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30964885

RESUMEN

Triple-Negative Breast Cancers (TNBCs) are the most difficult to treat subtype of breast cancer and are often associated with high nuclear expression of Snail and Cathepsin L (Cat L) protease. We have previously shown that Snail can increase Cat L expression/activity in prostate and breast cancer cells. This study investigated the role of CUX1 (a downstream substrate of Cat L) in TNBC. We showed that Cat L and CUX1 were highly expressed in TNBC patient tissue/cell lines, as compared to ER-positive samples, using cBioportal data and western blot/zymography analyses. Additionally, luciferase reporter and chromatin immunoprecipitation assays showed that CUX1 directly bound to estrogen receptor-alpha (ER-α) promoter in MDA-MB-468, a representative TNBC cell line, and that CUX1 siRNA could restore ER-α transcription and protein expression. Furthermore, Snail and CUX1 expression in various TNBC cell lines was inhibited by muscadine grape skin extract (MSKE, a natural grape product rich in anthocyanins) or Cat L inhibitor (Z-FY-CHO) leading to decreased cell invasion and migration. MSKE decreased cell viability and increased expression of apoptotic markers in MDA-MB-468 cells, with no effect on non-tumorigenic MCF10A cells. MSKE also decreased CUX1 binding to ER-α promoter and restored ER-α expression in TNBC cells, while both MSKE and CUX1 siRNA restored sensitivity to estradiol and 4-hydoxytamoxifen as shown by increased cell viability. Therefore, CUX1 activated by Snail-Cat L signaling may contribute to TNBC via ER-α repression, and may be a viable target for TNBC using natural products such as MSKE that targets cancer and not normal cells.


Asunto(s)
Factor de Unión a CCAAT/genética , Receptor alfa de Estrógeno/genética , Proteínas de Homeodominio/genética , Extractos Vegetales/farmacología , Proteínas Represoras/genética , Factores de Transcripción/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Vitis/química , Apoptosis/efectos de los fármacos , Apoptosis/genética , Catepsina L/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7 , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , ARN Interferente Pequeño/genética , Factores de Transcripción de la Familia Snail/genética , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
16.
Cancer Lett ; 448: 155-167, 2019 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-30763715

RESUMEN

JunD, a member of the AP-1 family, is essential for cell proliferation in prostate cancer (PCa) cells. We recently demonstrated that JunD knock-down (KD) in PCa cells results in cell cycle arrest in G1-phase concomitant with a decrease in cyclin D1, Ki67, and c-MYC, but an increase in p21 levels. Furthermore, the over-expression of JunD significantly increased proliferation suggesting JunD regulation of genes required for cell cycle progression. Here, employing gene expression profiling, quantitative proteomics, and validation approaches, we demonstrate that JunD KD is associated with distinct gene and protein expression patterns. Comparative integrative analysis by Ingenuity Pathway Analysis (IPA) identified 1) cell cycle control/regulation as the top canonical pathway whose members exhibited a significant decrease in their expression following JunD KD including PRDX3, PEA15, KIF2C, and CDK2, and 2) JunD dependent genes are associated with cell proliferation, with MYC as the critical downstream regulator. Conversely, JunD over-expression induced the expression of the above genes including c-MYC. We conclude that JunD is a crucial regulator of cell cycle progression and inhibiting its target genes may be an effective approach to block prostate carcinogenesis.


Asunto(s)
Proliferación Celular/fisiología , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-jun/fisiología , Proteínas Proto-Oncogénicas c-myc/fisiología , Ciclo Celular/fisiología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Análisis por Micromatrices , Transducción de Señal/fisiología
17.
Mol Cancer ; 7: 57, 2008 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-18559081

RESUMEN

BACKGROUND: Certain endogenous metabolites can influence the rate of cancer cell growth. For example, diacylglycerol, ceramides and sphingosine, NAD+ and arginine exert this effect by acting as signaling molecules, while carrying out other important cellular functions. Metabolites can also be involved in the control of cell proliferation by directly regulating gene expression in ways that are signaling pathway-independent, e.g. by direct activation of transcription factors or by inducing epigenetic processes. The fact that metabolites can affect the cancer process on so many levels suggests that the change in concentration of some metabolites that occurs in cancer cells could have an active role in the progress of the disease. RESULTS: CoMet, a fully automated Computational Metabolomics method to predict changes in metabolite levels in cancer cells compared to normal references has been developed and applied to Jurkat T leukemia cells with the goal of testing the following hypothesis: Up or down regulation in cancer cells of the expression of genes encoding for metabolic enzymes leads to changes in intracellular metabolite concentrations that contribute to disease progression. All nine metabolites predicted to be lowered in Jurkat cells with respect to lymphoblasts that were examined (riboflavin, tryptamine, 3-sulfino-L-alanine, menaquinone, dehydroepiandrosterone, alpha-hydroxystearic acid, hydroxyacetone, seleno-L-methionine and 5,6-dimethylbenzimidazole), exhibited antiproliferative activity that has not been reported before, while only two (bilirubin and androsterone) of the eleven tested metabolites predicted to be increased or unchanged in Jurkat cells displayed significant antiproliferative activity. CONCLUSION: These results: a) demonstrate that CoMet is a valuable method to identify potential compounds for experimental validation, b) indicate that cancer cell metabolism may be regulated to reduce the intracellular concentration of certain antiproliferative metabolites, leading to uninhibited cellular growth and c) suggest that many other endogenous metabolites with important roles in carcinogenesis are awaiting discovery.


Asunto(s)
Proliferación Celular , Leucemia de Células T/metabolismo , Biología de Sistemas , Antimetabolitos Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Diseño de Fármacos , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Células Jurkat , Leucemia de Células T/enzimología , Leucemia de Células T/genética , Leucemia de Células T/patología , Reproducibilidad de los Resultados
18.
BMC Mol Biol ; 9: 55, 2008 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-18533037

RESUMEN

BACKGROUND: Dosage compensation in Drosophila is the epigenetic process by which the expression of genes located on the single X-chromosome of males is elevated to equal the expression of X-linked genes in females where there are two copies of the X-chromosome. While epigenetic mechanisms are hypothesized to have evolved originally to silence transposable elements, a connection between transposable elements and the evolution of dosage compensation has yet to be demonstrated. RESULTS: We show that transcription of the Drosophila melanogaster copia LTR (long terminal repeat) retrotransposon is significantly down regulated when in the hemizygous state. DNA digestion and chromatin immunoprecipitation (ChIP) analyses demonstrate that this down regulation is associated with changes in chromatin structure mediated by the histone acetyltransferase, MOF. MOF has previously been shown to play a central role in the Drosophila dosage compensation complex by binding to the hemizygous X-chromosome in males. CONCLUSION: Our results are consistent with the hypothesis that MOF originally functioned to silence retrotransposons and, over evolutionary time, was co-opted to play an essential role in dosage compensation in Drosophila.


Asunto(s)
Evolución Biológica , Compensación de Dosificación (Genética) , Drosophila/genética , Retroelementos , Secuencias Repetidas Terminales , Animales , Animales Modificados Genéticamente , Inmunoprecipitación de Cromatina , Femenino , Histona Acetiltransferasas/genética , Masculino
19.
PLoS Med ; 5(12): e232, 2008 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19053170

RESUMEN

BACKGROUND: Although it has long been appreciated that ovarian carcinoma subtypes (serous, clear cell, endometrioid, and mucinous) are associated with different natural histories, most ovarian carcinoma biomarker studies and current treatment protocols for women with this disease are not subtype specific. With the emergence of high-throughput molecular techniques, distinct pathogenetic pathways have been identified in these subtypes. We examined variation in biomarker expression rates between subtypes, and how this influences correlations between biomarker expression and stage at diagnosis or prognosis. METHODS AND FINDINGS: In this retrospective study we assessed the protein expression of 21 candidate tissue-based biomarkers (CA125, CRABP-II, EpCam, ER, F-Spondin, HE4, IGF2, K-Cadherin, Ki-67, KISS1, Matriptase, Mesothelin, MIF, MMP7, p21, p53, PAX8, PR, SLPI, TROP2, WT1) in a population-based cohort of 500 ovarian carcinomas that was collected over the period from 1984 to 2000. The expression of 20 of the 21 biomarkers differs significantly between subtypes, but does not vary across stage within each subtype. Survival analyses show that nine of the 21 biomarkers are prognostic indicators in the entire cohort but when analyzed by subtype only three remain prognostic indicators in the high-grade serous and none in the clear cell subtype. For example, tumor proliferation, as assessed by Ki-67 staining, varies markedly between different subtypes and is an unfavourable prognostic marker in the entire cohort (risk ratio [RR] 1.7, 95% confidence interval [CI] 1.2%-2.4%) but is not of prognostic significance within any subtype. Prognostic associations can even show an inverse correlation within the entire cohort, when compared to a specific subtype. For example, WT1 is more frequently expressed in high-grade serous carcinomas, an aggressive subtype, and is an unfavourable prognostic marker within the entire cohort of ovarian carcinomas (RR 1.7, 95% CI 1.2%-2.3%), but is a favourable prognostic marker within the high-grade serous subtype (RR 0.5, 95% CI 0.3%-0.8%). CONCLUSIONS: The association of biomarker expression with survival varies substantially between subtypes, and can easily be overlooked in whole cohort analyses. To avoid this effect, each subtype within a cohort should be analyzed discretely. Ovarian carcinoma subtypes are different diseases, and these differences should be reflected in clinical research study design and ultimately in the management of ovarian carcinoma.


Asunto(s)
Biomarcadores de Tumor/fisiología , Carcinoma/clasificación , Enfermedades del Ovario/diagnóstico , Neoplasias Ováricas/clasificación , Biomarcadores de Tumor/metabolismo , Carcinoma/diagnóstico , Carcinoma/mortalidad , Carcinoma/patología , Estudios de Cohortes , Factores de Confusión Epidemiológicos , Diagnóstico Diferencial , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Enfermedades del Ovario/clasificación , Enfermedades del Ovario/metabolismo , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Pronóstico , Estudios Retrospectivos , Análisis de Supervivencia , Análisis de Matrices Tisulares
20.
PLoS One ; 13(9): e0203855, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30199553

RESUMEN

African Americans (AA) have higher death rates due to prostate and breast cancer as compared to Caucasian Americans (CA), and few biomarkers have been associated with this disparity. In our study we investigated whether epithelial-mesenchymal transition (EMT) with a focus on Snail and Cathepsin L (Cat L), could potentially be two markers associated with prostate and breast health disparities. We have previously shown that Snail can increase Cat L protein and activity in prostate and breast cancer. Western blot and real-time PCR analyses showed that mesenchymal protein expression (Snail, vimentin, Cat L) and Cat L activity (shown by zymography) was higher in AA prostate cancer cells as compared to CA normal transformed RWPE-1 prostate epithelial cells, and androgen-dependent cells, and comparable to metastatic CA cell lines. With respect to breast cancer, mesenchymal markers were higher in TNBC compared to non-TNBC cells. The higher mesenchymal marker expression was functionally associated with higher proliferative and migratory rates. Immunohistochemistry showed that both nuclear Snail and Cat L expression was significantly higher in cancer compared to normal for CA and Bahamas prostate patient tissue. Interestingly, AA normal tissue stained higher for nuclear Snail and Cat L that was not significantly different to cancer tissue for both prostate and breast tissue, but was significantly higher than CA normal tissue. AA TNBC tissue also displayed significantly higher nuclear Snail expression compared to CA TNBC, while no significant differences were observed with Luminal A cancer tissue. Therefore, increased EMT in AA compared to CA that may contribute to the more aggressive disease.


Asunto(s)
Catepsina L/genética , Transición Epitelial-Mesenquimal/fisiología , Factores de Transcripción de la Familia Snail/genética , Adulto , Negro o Afroamericano/genética , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cadherinas/metabolismo , Catepsina L/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción/metabolismo , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda