Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Semin Cancer Biol ; 86(Pt 3): 367-381, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34896267

RESUMEN

Organoids are simplified in vitro model systems of organs that are used for modeling tissue development and disease, drug screening, cell therapy, and personalized medicine. Despite considerable success in the design of organoids, challenges remain in achieving real-life applications. Organoids serve as unique and organized groups of micro physiological systems that are capable of self-renewal and self-organization. Moreover, they exhibit similar organ functionality(ies) as that of tissue(s) of origin. Organoids can be designed from adult stem cells, induced pluripotent stem cells, or embryonic stem cells. They consist of most of the important cell types of the desired tissue/organ along with the topology and cell-cell interactions that are highly similar to those of an in vivo tissue/organ. Organoids have gained interest in human biomedical research, as they demonstrate high promise for use in basic, translational, and applied research. As in vitro models, organoids offer significant opportunities for reducing the reliance and use of experimental animals. In this review, we will provide an overview of organoids, as well as those intercellular communications mediated by extracellular vesicles (EVs), and discuss the importance of organoids in modeling a tumor immune microenvironment (TIME). Organoids can also be exploited to develop a better understanding of intercellular communications mediated by EVs. Also, organoids are useful in mimicking TIME, thereby offering a better-controlled environment for studying various associated biological processes and immune cell types involved in tumor immunity, such as T-cells, macrophages, dendritic cells, and myeloid-derived suppressor cells, among others.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , Neoplasias , Adulto , Animales , Humanos , Organoides , Células Madre Pluripotentes Inducidas/metabolismo , Medicina de Precisión , Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
2.
Semin Cancer Biol ; 80: 218-236, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-32502598

RESUMEN

Due to the high number of annual cancer-related deaths, and the economic burden that this malignancy affects today's society, the study of compounds isolated from natural sources should be encouraged. Most cancers are the result of a combined effect of lifestyle, environmental factors, and genetic and hereditary components. Recent literature reveals an increase in the interest for the study of phytochemicals from traditional medicine, this being a valuable resource for modern medicine to identify novel bioactive agents with potential medicinal applications. Phytochemicals are components of traditional medicine that are showing promising application in modern medicine due to their antitumor activities. Recent studies regarding two major mechanisms underlying cancer development and regulation, apoptosis and autophagy, have shown that the signaling pathways of both these processes are significantly interconnected through various mechanisms of crosstalk. Phytochemicals are able to activate pro-autophagic and pro-apoptosis mechanisms. Understanding the molecular mechanism involved in apoptosis-autophagy relationship modulated by phytochemicals plays a key role in development of a new therapeutic strategy for cancer treatment. The purpose of this review is to outline the bioactive properties of the natural phytochemicals with validated antitumor activity, focusing particularly on their role in the regulation of apoptosis and autophagy crosstalk that triggers the uncontrolled expansion of tumor cells. Furthermore, we have also critically discussed the limitations and challenges of existing research strategies and the prospective research directions in this field.


Asunto(s)
Autofagia , Neoplasias , Apoptosis , Autofagia/fisiología , Humanos , Neoplasias/patología , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Estudios Prospectivos , Transducción de Señal
3.
Curr Issues Mol Biol ; 45(2): 975-989, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36826008

RESUMEN

MicroRNAs (miRNAs) are molecules with a role in the post-transcriptional regulation of messenger RNA, being involved in a wide range of biological and pathological processes. In the present study, we aim to characterize the behavior of a few miRNAs with roles in the cell cycle and differentiation of colon cancer (CC) cells. The present work considers miRNAs as reflections of the complex cellular processes in which they are generated, their observed variations being used to characterize the molecular networks in which they are part and through which cell proliferation is achieved. Tumoral and adjacent normal tissue samples were obtained from 40 CC patients, and the expression of miR-29a, miR-146a, miR-215 and miR-449 were determined by qRT-PCR analysis. Subsequent bioinformatic analysis was performed to highlight the transcription factors (TFs) network that regulate the miRNAs and functionally characterizes this network. There was a significant decrease in the expression of all miRNAs in tumor tissue. All miRNAs were positively correlated with each other. The analysis of the TF network showed tightly connected functional modules related to the cell cycle and associated processes. The four miRNAs are downregulated in CC; they are strongly correlated, showing coherence within the cellular network that regulates them and highlighting possible approach strategies.

4.
Curr Issues Mol Biol ; 45(3): 2248-2265, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36975515

RESUMEN

In recent years, the role of microRNA (miRNA) in post-transcriptional gene regulation has advanced and supports strong evidence related to their important role in the regulation of a wide range of fundamental biological processes. Our study focuses on identifying specific alterations of miRNA patterns in periodontitis compared with healthy subjects. In the present study, we mapped the major miRNAs altered in patients with periodontitis (n = 3) compared with healthy subjects (n = 5), using microarray technology followed by a validation step by qRT-PCR and Ingenuity Pathways Analysis. Compared to healthy subjects, 159 differentially expressed miRNAs were identified among periodontitis patients, of which 89 were downregulated, and 70 were upregulated, considering a fold change of ±1.5 as the cut-off value and p ≤ 0.05. Key angiogenic miRNAs (miR-191-3p, miR-221-3p, miR-224-5p, miR-1228-3p) were further validated on a separate cohort of patients with periodontitis versus healthy controls by qRT-PCR, confirming the microarray data. Our findings indicate a periodontitis-specific miRNA expression pattern representing an essential issue for testing new potential diagnostic or prognostic biomarkers for periodontal disease. The identified miRNA profile in periodontal gingival tissue was linked to angiogenesis, with an important molecular mechanism that orchestrates cell fate.

5.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982797

RESUMEN

Circular RNAs (circRNAs) have gained recent attraction due to their functional versatility and particular structure connected to human diseases. Current investigations are focused on the interplay between their ability to sponge smaller species of RNAs, such as microRNAs (miRNAs), thus influencing their regulatory activity on gene expression and protein templates. Therefore, their reported implication in various biological processes axis has resulted in an accumulating number of studies. While the testing and annotation methods of novel circular transcripts are still under development, there is still a plethora of transcript candidates suitable for investigation in human disease. The discordance in the literature regarding the approaches used in circRNAs quantification and validation methods, especially regarding qRT-PCR, the current golden standard procedure, leads to high result variability and undermines the replicability of the studies. Therefore, our study will offer several valuable insights into bioinformatic data for experimental design for circRNA investigation and in vitro aspects. Specifically, we will highlight key aspects such as circRNA database annotation divergent primer design and several processing steps, such as RNAse R treatment optimization and circRNA enrichment assessment. Additionally, we will provide insights into the exploration of circRNA-miRNA interactions, a prerequisite for further functional investigations. With this, we aim to contribute to the methodological consensus in a currently expanding field with possible implications for assessing therapeutic targets and biomarker discovery.


Asunto(s)
MicroARNs , ARN Circular , Humanos , ARN Circular/genética , MicroARNs/genética , MicroARNs/metabolismo , Reacción en Cadena de la Polimerasa , Biología Computacional/métodos , Redes Reguladoras de Genes , Perfilación de la Expresión Génica/métodos
6.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003512

RESUMEN

Glioblastoma (GBM) is a primary brain tumor arising from glial cells. The tumor is highly aggressive, the reason for which it has become the deadliest brain tumor type with the poorest prognosis. Like other cancers, it compromises molecular alteration on genetic and epigenetic levels. Epigenetics refers to changes in gene expression or cellular phenotype without the occurrence of any genetic mutations or DNA sequence alterations in the driver tumor-related genes. These epigenetic changes are reversible, making them convenient targets in cancer therapy. Therefore, we aim to review critical epigenetic dysregulation processes in glioblastoma. We will highlight the significant affected tumor-related pathways and their outcomes, such as regulation of cell cycle progression, cell growth, apoptosis, angiogenesis, cell invasiveness, immune evasion, or acquirement of drug resistance. Examples of molecular changes induced by epigenetic modifications, such as DNA epigenetic alterations, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) regulation, are highlighted. As understanding the role of epigenetic regulators and underlying molecular mechanisms in the overall pro-tumorigenic landscape of glioblastoma is essential, this literature study will provide valuable insights for establishing the prognostic or diagnostic value of various non-coding transcripts, including miRNAs.


Asunto(s)
Glioblastoma , MicroARNs , Humanos , Glioblastoma/metabolismo , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Epigénesis Genética
7.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36902482

RESUMEN

The lack of estrogen or progesterone receptors and absence of HER2 amplification/overexpression in triple-negative breast cancer (TNBC) restricts therapeutic options used in clinical management. MicroRNAs (miRNAs) are small, non-coding transcripts which affect important cellular mechanisms by regulating gene expression at the post-transcriptional level. Among this class, attention was focused on miR-29b-3p with a high profile in TNBC and correlated with the overall survival rates, as TCGA data revealed. This study aims to investigate the implication of the miR-29b-3p inhibitor in TNBC cell lines by identifying a potential therapeutic transcript, improving the clinical outcomes of this disease. The experiments were performed on two TNBC cell lines (MDA-MB-231 and BT549) as in vitro models. An established dose of 50 nM was used for all functional assays performed on the miR-29b-3p inhibitor. A decreased level of miR-29b-3p determined a significant reduction in cell proliferation and colony-forming capacity. At the same time, the changes occurring at the molecular and cellular levels were highlighted. We observed that, when inhibiting the expression level of miR-29b-3p, processes such as apoptosis and autophagy were activated. Further, microarray data revealed that the miRNA expression pattern was altered after miR-29b-3p inhibition, pointing out 8 overexpressed and 11 downregulated miRNAs specific for BT549 cells and 33 upregulated and 10 downregulated miRNAs that were specific for MDA-MB-231 cells. As a common signature for both cell lines, three transcripts were observed, two downregulated, miR-29b-3p and miR-29a, and one upregulated, miR-1229-5p. According to DIANA miRPath, the main predicted targets are related to ECM (extracellular matrix) receptor interaction and TP53 signaling. An additional validation step through qRT-PCR was performed, which showed an upregulation of MCL1 and TGFB1. By inhibiting the expression level of miR-29b-3p, it was shown that complex regulatory pathways targeted this transcript in TNBC cells.


Asunto(s)
MicroARNs , Neoplasias de la Mama Triple Negativas , Humanos , Apoptosis , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias de la Mama Triple Negativas/genética , Regulación hacia Arriba
8.
Curr Issues Mol Biol ; 44(4): 1754-1767, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35723379

RESUMEN

Oral squamous cell carcinoma (OSCC) is considered the sixth most common cancer worldwide. To reduce the high mortality of the disease, sensitive and specific diagnostic and prognostic biomarkers are urgently needed. Non-coding RNA, microRNAs (miRNAs), which are short length non-coding transcripts, or long non-coding RNA (lncRNA) seem to be potential biomarkers, considering that they have an important role in regulation of cell fate being involved in a wide range of biological processes. Literature data emphasized the important role of these transcripts as a biomarker for diagnosis and prognosis in oral squamous cell carcinoma. Therefore, we have evaluated the expression levels of a panel of four miRNAs (miR-21-5p, miR-93-5p, miR-200c-3p and miR-205-5p) and H19, MALAT1 by quantitative real-time PCR (qRT-PCR) from 33 fresh frozen tissues and 33 normal adjacent tissues. Our date revealed miR-21-5p and miR-93-5p to be upregulated, while miR-200c-3p and miR-205-5p to be downregulated. Regarding the long non-coding RNAs, H19 and MALAT1, were also downregulated. We also investigated the expression of BCL2, which is another important gene correlated to non-coding RNAs investigated by as, and it was also under-expressed. Additional validation step at protein level was done for KI67, TP53 and BCL2. In our patient cohort no correlation with clinical stage and smoking status was observed. The results of the present study indicated the important role of miR-21-5p, miR-93-5p, miR-200c-3p, miR-205-5p and H19 in OSCC. Differential expression of these transcripts at sub-sites, may serve as a diagnostic marker with further elaboration on a larger sample size. Additional studies should be conducted to confirm the results, particularly the interconnection with coding and non-coding genes.

9.
Int J Mol Sci ; 23(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35682732

RESUMEN

Background: Cervical cancer is one of the most common malignancies in women in terms of prevalence and mortality. Cervical cancer has some particularities that distinguish it from any other oncologic pathology: first, it is completely preventable by prompt detection of its precursor, cervical intraepithelial neoplasia (CIN); second, the Human Papillomavirus (HPV) infection is a known etiological agent; third, the mean age at diagnosis is much lower than in other oncologic conditions, as a consequence of the sexually-transmitted HPV. Methods: We evaluated the expression level of several long noncoding RNAs and a microRNA in samples from 30 patients with CIN, 9 with cervical cancer and 38 normal samples using qRT-PCR technology. Results: We observed higher expression levels for MEG3, DAPK1, MLH1 and MALAT1 in CIN samples than in normal samples, whereas TIMP3 and SOX1 had lower expression levels. For cancer samples, DAPK1, MLH1 and MALAT1 had higher expression, and MEG3, TIMP3 and SOX1 had lower expression when compared to normal samples. In the case of CIN versus cancer samples, only MEG3 gene showed a statistically significant difference. The expression of miR-205-5p was lower in both CIN and cancer samples compared to normal samples. Conclusion: Decreased MEG3 expression could be considered an alarm signal in the transition from a premalignant cervical lesion to invasive cancer, while altered expression levels of TIMP3, SOX1, MLH1, MALAT1 and miR-205-5p could serve as early biomarkers in the diagnosis of premalignant cervical lesions. Future studies, including a larger number of patients with CIN, will be of particular importance in validating these observations.


Asunto(s)
MicroARNs , Infecciones por Papillomavirus , ARN Largo no Codificante , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Femenino , Humanos , MicroARNs/genética , Papillomaviridae/genética , Neoplasias del Cuello Uterino/patología , Displasia del Cuello del Útero/diagnóstico
10.
Int J Mol Sci ; 23(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35628157

RESUMEN

Lung cancers are broadly divided into two categories: non-small-cell lung carcinoma (NSCLC), which accounts for 80-85% of all cancer cases, and small-cell lung carcinoma (SCLC), which covers the remaining 10-15%. Recent advances in cancer biology and genomics research have allowed an in-depth characterization of lung cancers that have revealed new therapy targets (EGFR, ALK, ROS, and KRAS mutations) and have the potential of revealing even more biomarkers for diagnostic, prognostic, and targeted therapies. A new source of biomarkers is represented by non-coding RNAs, especially microRNAs (miRNAs). MiRNAs are short non-coding RNA sequences that have essential regulatory roles in multiple cancers. Therefore, we aim to investigate the tumor microenvironment (TME) and miRNA tumor profile in a subset of 51 early-stage lung cancer samples (T1 and T2) to better understand early tumor and TME organization and molecular dysregulation. We analyzed the immunohistochemistry expression of CD4 and CD8 as markers of the main TME immune populations, E-cadherin to evaluate early-stage epithelial-to-mesenchymal transition (EMT), and p53, the main altered tumor suppressor gene in lung cancer. Starting from these 4 markers, we identified and validated 4 miRNAs that target TP53 and regulate EMT that can be further investigated as potential early-stage lung cancer biomarkers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Pulmón/patología , Neoplasias Pulmonares/metabolismo , MicroARNs/genética , Microambiente Tumoral/genética
11.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563174

RESUMEN

Triple negative breast cancer (TNBC) is currently associated with a lack of treatment options. Arsenic derivatives have shown antitumoral activity both in vitro and in vivo; however, their mode of action is not completely understood. In this work we evaluate the response to arsenate of the double positive MCF-7 breast cancer cell line as well as of two different TNBC cell lines, Hs578T and MDA-MB-231. Multimodal experiments were conducted to this end, using functional assays and microarrays. Arsenate was found to induce cytoskeletal alteration, autophagy and apoptosis in TNBC cells, and moderate effects in MCF-7 cells. Gene expression analysis showed that the TNBC cell lines' response to arsenate was more prominent in the G2M checkpoint, autophagy and apoptosis compared to the Human Mammary Epithelial Cells (HMEC) and MCF-7 cell lines. We confirmed the downregulation of anti-apoptotic genes (MCL1, BCL2, TGFß1 and CCND1) by qRT-PCR, and on the protein level, for TGFß2, by ELISA. Insight into the mode of action of arsenate in TNBC cell lines it is provided, and we concluded that TNBC and non-TNBC cell lines reacted differently to arsenate treatment in this particular experimental setup. We suggest the future research of arsenate as a treatment strategy against TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Apoptosis , Arseniatos , Línea Celular Tumoral , Proliferación Celular , Humanos , Células MCF-7 , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
12.
Medicina (Kaunas) ; 58(2)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35208504

RESUMEN

Background and Objectives: Celiac disease (CD) is an immune-mediated enteropathy with characteristic intestinal alterations. CD occurs as a chronic inflammation secondary to gluten sensitivity in genetically susceptible individuals. Until now, the exact cause of the disease has not been established, which is why new studies have appeared that address the involvement of various genes and microRNAs (miRNAs) in the pathogenesis. The aim of the study is to describe the expression of selected genes (Wnt family member 3, WNT3; Wnt family member 11, WNT11; tumor necrosis factor alpha, TNFα; mitogen-activated protein kinase 1, MAPK1; AKT serine/threonine kinase 3, AKT3; phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha, PIK3CA; and cyclin D1, CCND1) and miRNAs (miR-192-5p, miR-194-5p, miR-449a and miR-638) in adult patients with CD. Materials and Methods: In total, 15 patients with CD at diagnosis (newly diagnosed), 33 patients on a gluten-free diet (GFD) for at least 1 year and 10 controls (control) were prospectively included. Blood samples were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Results: The results show that TNFα, MAPK1 and CCND1 were significantly overexpressed (p = 0.0249, p = 0.0019 and p = 0.0275, respectively) when comparing the newly diagnosed group to the controls. The other genes studied in CD patients were mostly with high values compared to controls, without reaching statistical significance. Among the miRNAs, the closest to a statistically significant value was miR-194-5p when the newly diagnosed group versus control (p = 0.0510) and GFD group versus control (p = 0.0671) were compared. The DIANA and miRNet databases identified significant functional activity for miR-449a and miR-192-5p and an interconnection of miR-194-5p and miR-449a with CCND1. Conclusions: In conclusion, genes and circulating miRNAs require further studies as they could represent important biomarkers in clinical practice.


Asunto(s)
Enfermedad Celíaca , MicroARN Circulante , MicroARNs , Adulto , Biomarcadores , Enfermedad Celíaca/genética , Dieta Sin Gluten , Humanos , MicroARNs/genética
13.
Histochem Cell Biol ; 156(4): 377-390, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34170400

RESUMEN

In hepatocellular carcinomas (HCCs), the role of the cell surface protein V-set and immunoglobulin domain containing 1 (VSIG1), which is known as a specific marker of the gastric mucosa and testis, has not yet been determined. We examined VSIG1 immunohistochemical (IHC) expression in 105 consecutive samples provided by HCC patients, along with the IHC expression of three of the biomarkers known to be involved in the epithelial-mesenchymal transition (EMT): vimentin (VIM), and E- and N-cadherin (encoded by CDH1 and CDH2 genes). IHC subcellular localization of thyroid transcription factor 1 (TTF1), in which nuclear-to-cytoplasmic translocation is known to cause a lineage shift from lung to gastric-type adenocarcinoma, was also checked. The obtained data were validated using the miRNET program. In the examined HCC samples, VSIG1 expression was observed in the cytoplasm of normal hepatocytes and downregulated in 47 of the 105 HCCs (44.76%). In 29 cases (27.62%), VSIG1 was co-expressed with cytoplasmic TTF1. VSIG1 expression was positively correlated with both E-cadherin and N-cadherin and negatively correlated with VIM (p < 0.0001). The VSIG1+/E-cadherin+/N-cadherin-/VIM phenotype was seen in 13 cases (12.4%) and was characteristic of well-differentiated (G1/2) carcinomas diagnosed in pT1/2 stages. Like pulmonary carcinomas, simultaneous cytoplasmic positivity of HCC cells for VSIG1 and TTF1 may be a potential indicator of a lineage shift from conventional to gastric-type HCC. The E-cadherin/VSIG1 complex can help suppress tumor growth by limiting HCC dedifferentiation. The miRNET-based interaction between VSIG1/VIM/CDH1/CDH2 genes might be interconnected by miR-200b-3p, a central regulator of EMT which also targets VIM and VSIG1.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias Gástricas/metabolismo , Vimentina/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Hepatocelular/diagnóstico , Proliferación Celular , Femenino , Humanos , Neoplasias Hepáticas/diagnóstico , Masculino , Persona de Mediana Edad , Estudios Observacionales como Asunto , Estudios Retrospectivos , Neoplasias Gástricas/diagnóstico , Adulto Joven
14.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884749

RESUMEN

Functional genomics applied in clinical disease diagnosis and prognosis allow the achievement of the progress in all aspects of biology in health and disease [...].


Asunto(s)
Genómica/métodos , Enfermedad/etiología , Enfermedad/genética , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Genómica/tendencias , Humanos , Pronóstico , Factores de Riesgo
15.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34769348

RESUMEN

Although skin melanoma (SKM) represents only one-quarter of newly diagnosed skin malignant tumors, it presents a high mortality rate. Hence, new prognostic and therapeutic tools need to be developed. This study focused on investigating the prognostic value of the subcellular expression of BRAF, KRAS, and KIT in SKM in correlation with their gene-encoding interactions. In silico analysis of the abovementioned gene interactions, along with their mRNA expression, was conducted, and the results were validated at the protein level using immunohistochemical (IHC) stains. For IHC expression, the encoded protein expressions were checked on 96 consecutive SKMs and 30 nevi. The UALCAN database showed no prognostic value for the mRNA expression level of KRAS and BRAF and demonstrated a longer survival for patients with low mRNA expression of KIT in SKMs. IHC examinations of SKMs confirmed the UALCAN data and showed that KIT expression was inversely correlated with ulceration, Breslow index, mitotic rate, and pT stage. KRAS expression was also found to be inversely correlated with ulceration and perineural invasion. When the subcellular expression of BRAF protein was recorded (nuclear vs. cytoplasmatic vs. mixed nucleus + cytoplasm), a direct correlation was emphasized between nuclear positivity and lymphovascular or perineural invasion. The independent prognostic value was demonstrated for mixed expression of the BRAF protein in SKM. BRAF cytoplasmic predominance, in association with KIT's IHC positivity, was more frequently observed in early-stage nonulcerated SKMs, which displayed a low mitotic rate and a late death event. The present study firstly verified the possible prognostic value of BRAF subcellular localization in SKMs. A low mRNA expression or IHC cytoplasmic positivity for KIT and BRAF might be used as a positive prognostic parameter of SKM. SKM's BRAF nuclear positivity needs to be evaluated in further studies as a possible indicator of perineural and lymphovascular invasion.


Asunto(s)
Melanoma/patología , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Cutáneas/patología , Fracciones Subcelulares/metabolismo , Adolescente , Adulto , Anciano , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Lactante , Masculino , Melanoma/genética , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Neoplasias Cutáneas/genética , Tasa de Supervivencia , Adulto Joven
16.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477745

RESUMEN

Angiogenesis is a broad spread term of high interest in regenerative medicine and tissue engineering including the dental field. In the last two decades, researchers worldwide struggled to find the best ways to accelerate healing, stimulate soft, and hard tissue remodeling. Stem cells, growth factors, pathways, signals, receptors, genetics are just a few words that describe this area in medicine. Dental implants, bone and soft tissue regeneration using autologous grafts, or xenografts, allografts, their integration and acceptance rely on their material properties. However, the host response, through its vascularization, plays a significant role. The present paper aims to analyze and organize the latest information about the available dental stem cells, the types of growth factors with pro-angiogenic effect and the possible therapeutic effect of enhanced angiogenesis in regenerative dentistry.


Asunto(s)
Odontología/tendencias , Neovascularización Fisiológica/genética , Regeneración/fisiología , Medicina Regenerativa/tendencias , Autoinjertos/trasplante , Humanos , Ingeniería de Tejidos , Trasplante Homólogo/tendencias
17.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502312

RESUMEN

Lung cancer is the leading disease of cancer-related deaths worldwide. Since the beginning of the 20th century, various infectious agents associated with lung cancer have been identified. The mechanisms that include systemic inflammatory pathways as effect of microbial persistence in the lung can secondarily promote the development of lung carcinogenesis. Chronic inflammation associated with lung-cancer infections is known to precede tumor development, and it has a strong effect on the response(s) to therapy. In fact, both viral and bacterial infections can activate inflammatory cells and inflammatory signaling pathways. In this review, an overview of critical findings of recent studies investigating associations between each of viral and bacterial pathogens and lung carcinoma is provided, with particular emphasis on how infectious organisms can interfere with oncogenic processes and all the way through immunity. Moreover, a discussion of the direct crosstalk between lung tumor development and inflammatory processes is also presented.


Asunto(s)
Bacterias/patogenicidad , Infecciones Bacterianas/complicaciones , Sistema Inmunológico/inmunología , Inflamación/complicaciones , Neoplasias Pulmonares/patología , Animales , Humanos , Neoplasias Pulmonares/etiología
18.
Cell Physiol Biochem ; 54(4): 648-664, 2020 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32619350

RESUMEN

BACKGROUND/AIMS: Triple negative breast cancer (TNBC) is a highly aggressive form of cancer which lacks targeted therapy options. Thus, TNBC patients have poor outcomes and a decreased survival rate than patients with other types of breast cancers. Due to the lack of surface receptors, TNBC needs a comprehensive investigation to provide more information regarding patient's therapy, as well as to understand the way how to counteract drug resistance mechanisms. Nowadays, chemotherapy remains an unsolved issue which rise a lot of questions in oncology field. METHODS: In this article, we investigated the implication of paclitaxel in TNBC cell lines after a prolong administration, after 12, respectively 24 passages followed by evaluation of morphological alteration, mutational pattern by next generation sequencing and the altered gene expression pattern by microarray technology and validation by qRT-PCR of the resistance to therapy relevant genes. RESULTS: Using functional assays, we showed that paclitaxel exhibits antiproliferative activity on Hs578T/Pax and MDA-MB-231/Pax demonstrating the activation of cell death mechanisms. Confocal microscopy revealed significant modifications which occur in the morphological structure with a disruption of the actin-filaments and also mitotic catastrophe. The presence of these nuclear alterations is due to some modifications at the cellular and molecular levels. Important alterations at the transcriptomic and genomic levels were observed from this a common drug resistance signature (IL-6, CXCL8, VEGFA, EGR1, PTGS2 and TRIB1) for both cell lines at 24 passages was discovered. Also, an important mutation (TP53) linked with drug response was identified. CONCLUSION: These results might be used to furnish novel biomarkers in TNBC, as well as to find a strategy to counteract the resistance to therapy in order to increase survival rate and to enhance the prognosis of patients with TNBC.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Muerte Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Paclitaxel/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína p53 Supresora de Tumor/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Genómica , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Proteína p53 Supresora de Tumor/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Mol Cell Biochem ; 475(1-2): 285-299, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32888160

RESUMEN

Triple-negative breast cancer (TNBC), which accounts for 10-20% of all breast cancers, has the worst prognosis. Although chemotherapy treatment is a standard for TNBC, it lacks a specific target. Therefore, new therapeutic strategies are required to be investigated. In this study, a combined doxorubicin (DOX) and small interfering RNA (siRNA) therapy is proposed as therapeutic strategy for targeting TGFß1 gene. Hs578T cell line is used as in vitro model for TNBC, wherein TGFß1siRNA therapy is employed to enhance therapeutic effects. Cell proliferation rate is measured using an MTT test, and morphological alterations are assed using microscopically approached, while gene expression is determined by qRT-PCR analysis. The combined treatment of TGFß1siRNA and DOX reduced levels of cell proliferation and mitochondrial activity and promoted the alteration of cell morphology (dark-field microscopy). DOX treatment caused downregulation of six genes and upregulation of another six genes. The combined effects of DOX and TGFß1siRNA resulted in upregulation of 13 genes and downregulation of four genes. Silencing of TGFß1 resulted in activation of cell death mechanisms in Hs578T cells, to potentiate the effects of DOX, but not in an additive manner, due to the activation of genes involved in resistance to therapy (ABCB1 and IL-6).


Asunto(s)
Doxorrubicina/farmacología , ARN Interferente Pequeño/genética , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/terapia , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Proliferación Celular , Terapia Combinada , Bases de Datos Genéticas , Resistencia a Antineoplásicos , Femenino , Terapia Genética , Humanos , Ratones , Persona de Mediana Edad , Inhibidores de Topoisomerasa II/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
20.
Cell Mol Life Sci ; 76(8): 1559-1577, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30805658

RESUMEN

Circular RNAs (circRNAs) are members of the non-coding transcriptome; however, some of them are translated into proteins. These transcripts have important roles in both physiological and pathological mechanisms due to their ability to directly influence cellular signaling pathways. Specifically, circRNAs are regulators of transcription, translation, protein interaction, and signal transduction. An increased knowledge within their area is observed over the last few years, concomitant with the development of next-generation sequencing techniques. circRNAs are mostly tissue and disease specific with the ability of specifically changing the biological behavior of cells. The altered expression profile is currently investigated as novel minimally invasive diagnosis/prognosis tool and also therapeutic target in human disease. The diagnosis approach is based on their level modification within pathological states, especially cancer, where circRNAs' therapies are intensively explored in anti-aging strategies, diabetes, cardiovascular diseases, and malignant pathologies, and are relying on the restoration of homeostatic profiles.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Neoplasias , ARN/metabolismo , Envejecimiento , Animales , Biomarcadores , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/terapia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Diabetes Mellitus/terapia , Regulación de la Expresión Génica , Humanos , MicroARNs/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , ARN/genética , ARN Circular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda