Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 21(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34372385

RESUMEN

In microwave imaging, it is often of interest to inspect electrically large spatial regions. In these cases, data must be collected over a great deal of measurement points which entails long measurement time and/or costly, and often unfeasible, measurement configurations. In order to counteract such drawbacks, we have recently introduced a microwave imaging algorithm that looks for the scattering targets in terms of equivalent surface currents supported over a given reference plane. While this method is suited to detect shallowly buried targets, it allows one to independently process all frequency data, and hence the source and the receivers do not need to be synchronized. Moreover, spatial data can be reduced to a large extent, without any aliasing artifacts, by properly combining single-frequency reconstructions. In this paper, we validate such an approach by experimental measurements. In particular, the experimental test site consists of a sand box in open air where metallic plate targets are shallowly buried a (few cm) under the air/soil interface. The investigated region is illuminated by a fixed transmitting horn antenna, whereas the scattered field is collected over a planar measurement aperture at a fixed height from the air-sand interface. The transmitter and the receiver share only the working frequency information. Experimental results confirm the feasibility of the method.

2.
Opt Express ; 23(7): 8200-15, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25968659

RESUMEN

The problem of diagnosing a grid of small (in terms of the probing wavelength) dielectric scatterers is considered. The aim is to detect and locate possible defects occurring within a known grid when one (or more) scatterer is removed/missing (fault). The study is developed for the canonical case of a TM scalar two-dimensional geometry with the scatterers consisting of dielectric cylinders of small circular cross section. The scattering by a fault is modeled by relaying only to a priori information about the complete grid which leads to a numerically effective inversion procedures as the bulk of the numerical effort is to be done only once. Inversion is achieved by a truncated singular value decomposition scheme and results are provided in terms of closed form expressions for the probability of detection and of false alarm. This allows us to foreseen the achievable performance and to highlight the role of scattering configuration parameters. Numerical examples are also enclosed to corroborate theoretical outcomes. The case of two or more faults is considered as well. For such a case it is numerically shown that detection method still works well even though multiple scattering (occurring between faults) is neglected.

3.
Bioengineering (Basel) ; 9(4)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35447716

RESUMEN

In this paper, the performance of three recent algorithms for the frequency-response enhancement of microwave resonant sensors are compared. The first one, a single-step algorithm, is based on a couple of direct-inverse Fourier transforms, giving a densely sampled response as a result. The second algorithm exploits an iterative procedure to progressively restricts the frequency response. The final one is based on the super-resolution MUSIC algorithm. The comparison is carried out through a Monte Carlo analysis. In particular, synthetic signals are firstly exploited to mimic the frequency response of a resonant microwave sensor. Then, experimental data collected from water-glucose solutions are adopted as validation test for potential applications in noninvasive blood-glucose monitoring.

4.
J Opt Soc Am A Opt Image Sci Vis ; 28(12): 2588-99, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22193272

RESUMEN

The canonical problem of detecting and localizing missing scatterers (faults) inside a known grid of small cross section perfect electric conducting cylinders is dealt with. The case of a TM scalar two-dimensional geometry is considered. The scattering by a fault is modeled as the radiation of a proper magnetic current, by exploiting the Green's function of the complete grid. An approximated linear model of the scattering is proposed and discussed in terms of the achievable probability of detection, also in the case of two faults, and checked against model error and noisy synthetic data.

5.
Healthc Technol Lett ; 3(3): 218-221, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27733930

RESUMEN

This Letter introduces a feasibility study of a scanning system for applications in biomedical bone imaging operating in the microwave range 0.5-4 GHz. Mechanical uncertainties and data acquisition time are minimised by using a fully automated scanner that controls two antipodal Vivaldi antennas. Accurate antenna positioning and synchronisation with data acquisition enables a rigorous proof-of-concept for the microwave imaging procedure of a multi-layer phantom including skin, fat, muscle and bone tissues. The presence of a suitable coupling medium enables antenna miniaturisation and mitigates the impedance mismatch between antennas and phantom. The three-dimensional image of tibia and fibula is successfully reconstructed by scanning the multi-layer phantom due to the distinctive dielectric contrast between target and surrounding tissues. These results show the viability of a microwave bone imaging technology which is low cost, portable, non-ionising, and does not require specially trained personnel. In fact, as no a-priori characterisation of the antenna is required, the image formation procedure is very conveniently simplified.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda